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ABSTRACT

” This thesis examines two smoothing algorithms which deviate from
the classical method of using only one neighborhood size in the
smoothing procedure. The Supersmooth algorithm uses three neighbor-

hood sizes with local cross-validation in order to estimate an optimal

neighborhood size. The Split Linear Fit algorithm uses any number of

neighborhood sizes and computes a family of linear fits corresponding to
each neighborhood size; the final smooth points are a weighted average
of the linear fits. These two advanced smoothers are evaluated against
the results produced by previously validated, commonly used smoothers
and regression techniques. The measure of performance is the quality

of the smooth curves and the value of the sum of squared residuals.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this
While

every effort has been made, within the time available, to ensure that

research may not have been exercised for all cases of interest.

the programs are free of computational and logic errors, they cannot be
considered validated. Any application of these programs without addi-

tional verification is at the risk of the user.
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I. INTRODUCTION

A. BACKGROUND

"It is a well-established rule of scientific investigation that the first
time an experiment is performed the results bear all too little resemb-
lance to the 'truth' being sought" [Ref. 1: p. 1]. The experiment may
be the simple task of data collection, i.e. survey, or a process of
generating data. The analyst may have a small set or a large set of
data or a series of observations which must be analyzed. After some
data analysis, the analyst may extract quantities relevant to purposes
that he/she has in mind for further analysis. This analysis and data
extraction process has the formal name of data reduction. Tukey calls

this process "exploratory data analysis" [Ref. 2: p. 1].

There are several statistical methods that can facilitate the data
reduction process. The quote, "a picture says a thousand words,"
suggests that the data analysis involves pictorial representations of the
observed data. The single, most powerful statistical tool is a "well-
chosen graph”" [Ref. 3: p. 1]. A well-chosen graph enables salient
features of a data set to be picked out and vividly portrayed so that

the analyst can spot the features of particular interest [Ref. 4: p. 41].

The data set is very often bivariate data, i.e. pairs of values
Xy, Y9), . . ., (Xy, Yy), where it is conventional that the Yp,
called the ordinate, be a function of the corresponding X, called the
abscissa. The abscissa indicates a specific snapshot of time or is the
input to an experiment, i.e. the value of an independent variable. The
analysis of the data basically concentrates on finding a relationship
between the X; and the Y;. The single most powerful statistical tool
for analyzing the relationship between the X1 and the Yj is the scatter-
plot [Ref. 3: p. 75]. A scatterplot is a two-dimensional graph which
visually displays the relationship of the pairs of X; and Y;. The

vertical axis of the scatterplot represents the scale values of the

14

<o Ve ~ ot - Wt
Ly




[ I 4

.r'n’fl'

1l W
it e o/ S

P'l'.‘.

LAl I S s

- "
L B i g B

. ‘.'1

ordinate or Yp, and the horizontal axis represents the scale values of
the abscissa or XI' A scatterplot is easily accepted by the human
brain which quickly summarizes the depicted information and extracts
the salient features, patterns, and relationships that are not detected
with other data analytical methods, e.g. tabulated data. Figure 1.1 is
an example of a scatterplot displaying the Daily Sea-Surface
Temperature for 1971 at Granite Canyon, just South of Point Sur,
California [Ref. 4]. This sea-surface temperature data for 1971 is

given in tabular form in Appendix D.

DALY SEA SURFACE TEMPERATURE
AT GRANITE CANYON, CA.
MARCH 1, 1971 TO DECEMBER 31, 1971

14
A\J

TEMPERATURE IN DEGREE CENT.
10 12
L] LI
L

e Ao A il P L A
1060 111 1160 10 1280 1310 1360
JULIAN CA" b2 LATE

Figure 1.1  Scatterplot of Sea Surface Temperatures for 1971.

The scatterplot shown in Figure 1.1 is more compact and informative
than the corresponding tabulated data in Appendix D. The scatterplot
‘ndicates that the sea-surface temperature varies with the time of year,
i.e. general temperatures increase during the summer and decrease
during the fall. There may have been other extraneous factors that
affected the temperatures, e.g. the warm ocean current El Nino, an
intra-yearly occurrence which sometimes causes great climatic turbulence
all over the world, could be the cause of the great temperature varia-

tions shown by the scatterplot in Figure 1.1. It is very difficult to

15
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DAILY SEA SURFACE TEMPERATURE AT GRANITE CANYON, CA.
MARCH 1, 1971 TO DECEMBER 31, 1971
USING SUPERSMOOTHING

14

TEMPERATURE IN DEGREE CENT.
10 2

o 1 i e A 1
1060 1o 1180 1210 1280 1310 1380
JULIAN CALENDAR DATE

Figure 1.2 Smoothed Sea Surface Temperatures for 1971.

interpret the function imbeded in the scatterplot of Figure 1.1. An
attempt to sketch a rough line that follows the curvature of the points
may result in a tenuous and perhaps incorrect line in terms of depicting
the variability such as the periodicity in the data set. The sketching
of the line through the scatterplot of Figure 1.1 would take time and
involve strong subjective decisions. The result could be a misinterpre-
tation of the scatterplot/data. A more effective and substantiated
method of data reduction is "smoothing", see Figure 1.2. This scatter-
plot with a smooth curve through the raw data is more acceptable to the
human eye than a plain, data scatterplot and fairly well approximates
the raw data. A cyclic change of the sea surface temperature is
emphasized by the smooth curve. In addition, Figure 1.2 depicts that
a cycle with roughly a monthly period could exist in the data, i.e.

there are twelve peaks shown by the smooth curve.

Smoothing can be used on data sets whose scatterplots indicate an
underlying relationship that is either a simple linear function or a
complex sinusoid function. Smoothing has in the recent past years
become a useful data reduction technique. Banks, insurance companies,

and industrial firms smooth economic surveys [Ref. 5: p. 1].
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The government does smoothing on income data such as tax payments,
salaries and benefits to civil servants, and social services costs
[Ref. 6]. The space program does smoothing of test flight paths, fuel
usage, and orbiting ejection path data [Ref. 7]. Conferences have had

smoothing as the sole subject of discussion [Ref. 8].

The smoothing algorithm that is used to smooth a data set must use
a procedure that is flexible enough to discover trends in the data, i.e.
be able to accurately trace the observed data and respond to local
changes. Therefore, the algorithm should use local smoothing rather
than global smoothing which is used in linear regression and curve
fitting. This procedure allows the observed data to determine the

shape of the smooth curve.

An advanced smoothing algorithm must be more computationally effi-
cient and more user friendly than most current smoothing algorithms.
In addition an advanced smoothing algorithm must be able to correctly

extract the underlying function from the observed data.
B. SCOPE

This paper discusses and analyzes two advanced smoothing algo-
rithms, the Supersmoother algorithm [Ref. 9] and the Split Linear Fit
Algorithm [Ref. 10]. These two smoothing algorithm were developed at
Stanford University and thus have many similarities. The basic concept
used in these algorithms is that the underlying function is thought of
as a low frequency signal; therefore, the observed raw data is the
signal plus noise. Thus, the smoother is analogous to a low-pass filter
which is designed to compromise between the signal extracted, i.e.
desirable effects, and the noise filtered out, i.e. undesirable effects
[Ref. 10: p. 1]. Equation 1.1 shown below is a generalization of the

low-pass filter:

Yi=f(Y)+n, (1.1)
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B

where' YI is the observed value, f(YI) is the smooth function or
extracted signal, and r; is the additive residual or noise filtered out.
It is initially assumed that the set of Y; is an independent and identi-
cally distributed (i.i.d.) random sample from some unknown joint distri-
bution F(X, Y). It is also sometimes assumed that the ry are j.i.d.

with zero expectation and constant variance 02

, but possibly correlated;
thus the notation follows the convention set by time series theory
[Ref. 3: p 246]. The computed smooth values are estimates of the
smooth function f(Y;). It is best that the smooth point values be
computed using local averaging [Ref. 10: p. 3], in other words the ith
smooth point value is the average of the Y wvalues corresponding to the
X wvalues within a neighborhood of size K about XI, where a neighbor-
hood of size K about X; will have (K/2) point values to the right and
left. Equation 1.2 shown below states this averaging procedure in
conditional form, indicating that only the Y wvalues that correspond to
the X values within the neighborhood K about X; are involved in the

averaging.

s(X)) = average(Y, given X; a member of the neighborhood Kj), (1.2)

where s(Xj) is the computed smooth point value corresponding to X1,
KI is the neighborhood size corresponding to XI, J=1, . . ., KI is the
Jth member of the neighborhood of size K;, and Is1, . . ., N is the
index of the N points to be smoothed. For the simple, equal-weight,
moving average smoother, the smooth value at point X1 is computed by

equation 1.3:

l+£
2

s(Xy) = %x Yy, , (1.3)
K
J=1-X
2
where K is the neighborhood size and may encompass a fraction of the
data set to be smoothed or the entire data set. By looking at equation
1.3, it can be deduced that when I=1, . . ., (K-1) and I=(N-K-1),

., N the subscript of Y is negative and has no corresponding Y values.

18




Most simple moving average smoothers do not involve the latter
mentioned index values and begin the averaging with I=(X/2) and end
the averaging with I=N-(K/2); thus, the smooth output will have less

values than N, exactly K less values.

The neighborhood size, denoted above by K, referred to later in
this thesis as bandwidth, span, or windowsize, is a critical value which
must be chosen carefully because it determines to a great degree, the
goodness of fit of the smooth curve to the raw data. TFor example, with
the equal-weight, moving average smoother, a large neighborhood size
results in the loss of many smooth point values, and thus, the raw data
is not well depicted. A commonly used measure of goodness of fit is
the sum of squared residuals; thus, it is necessary to examine a
squared residual value in general terms. If the output of the smooth
function f(X;) is accepted as an estimate of the corresponding Yj and a
linear fit is done on the points within the neighborhood, then the
expected squared residual at point Xj, given a neighborhood size K,

may be determined by equation 1.4:

2

X | K)= [1(0) - kx B 7(%)| + xxe . (1.4)

The term within the brackets is the bias component of the estimated
residual value corresponding to Xj; in other words, the degree to
which the smooth point value deviates from the actual point value. The
second term is the variance component which indicates that the assumed
inherent constant variance of the residuals must be equally shared by
the estimated residuals within the neighborhood. Increasing the neigh-
borhood size, K, increases the bias and decreases the variance, thus a
plot of the smooth values will get smoother as K is increased.

Decreasing K will have the opposite effect.

Most smoothing algorithms use only one neighborhood size to

produce the smooth values, i.e. the same K for all X; in equations 1.3
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and 1.4. The problem with this method is that the smoothing program

T may have to be run several times with each run containing a different

Y K before the desired smoothing effect is produced. This thesis

discusses two advanced smoothing algorithms which deviate from this

procedure. The two advanced smoothing algorithms are:

S 1. the Supersmoother algorithm developed by Friedman and Stutzle
’ [Ref. 9];

-‘_-_‘:: 2. the Split Linear Fit algorithm developed by McDonald and Owen

ol [Ref. 10].

The Supersmoother requires that the user enter three different
neighborhood sizes, SPAN,, SPAN,, and SPANj, in increasing order.
Each span value determines a neighborhood size about each X1 on which
a linear regression is done. Therefore, three sets of regression results
| will correspond to each X;. Each of the three slope values, the three
corresponding y-intercept value, and the corresponding X; are used to
compute three fitted values. Each fitted value is subtracted from the
input Y; value corresponding to X;; the resulting values are called
cross-validated residuals. The minimum, absolute value of these cross-
validated residuals is then selected along with its span wvalue. This
i span value is an estimate of the optimal span wvalue corresponding to
) X1- This estimate is then adjusted using an outlier rejection rule which
will reflect the degree of robust smoothing desired by the user. The
smallest span value, SPANl, and the largest span value, SPAN3, dictate

the range within which Supersmoother finds the optimal span wvalue.

'<.
PRI SR A T
v e Yy N R
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The middle span value, SPAN,, is used as a central smoother, i.e. by
smoothing the array of optimal span values with the middle span value
the variability is reduced. This smoothing adjusts the span wvalues so
that the values flow smoothly from one point to the next adjacent point.
This method of finding the optimal span values is called local cross-
' , validation [Ref. 9: p. 1]. The method of cross-validation is a testing
procedure that uses the estimated regression equation on data different
.:7:‘.?. than the data used to estimate the coefficients of the estimated regres-

'.-;:' sion equation [Ref. 11: p. 110].
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E The Split Linear Fit algorithm uses one or more neighborhoods,
called window sizes, in order to produce for each I a family of linear
fitted values. Weights which indicate the goodness of fit of the fitted
values are then assigned to each of these linear fitted values. The
final I*M smooth value is computed as a weighted average of the linear
fits within the IR family of linear fits.

This technique of using more than one neighborhood size allows the
analyst to set upper and lower limits on the neighborhood size. By
accepting more than one neighborhood size, these advanced smoothers
take full advantage of the powerful computational capabilities of a
computer and thus are quicker and more efficient than other smoothers,
i.e. desired smoothing effects are achieved in less runs of a smoothing

program.

The purpose of this thesis is to expand the data smoothing subrou-
tine developed by Friedman and Stuetzle [Ref. 9] and the smoothing
program developed by McDonald and Owen [Ref. 10] into user friendly,
interactive computer programs, i.e. the user exchanges information with
the computer, that can be used as an exploratory data analytical tool

by students and faculty of the Naval Postgraduate School.

The Supersmoother algorithm was written as a FORTRAN subroutine
and has been incorporated into an interactive FORTRAN program. The
Split Linear Fit algorithm was part of a data smoothing package written
in the C computer language, which is not a common computer language
used at the Naval Postgraduate School. The Split Linear Fit algorithm
has been translated and is incorporated into an interactive FORTRAN
program. The point values produced by the Split Linear Fit FORTRAN
version are equivalent to the point values produced by the C language
version. Both the Supersmoother and the Split Linear Fit algorithms
are written in FORTRAN 77 for use on the IBM 3033 computer being
used at the Naval Postgraduate School. SUPSMO is the Supersmoother
program and SPLITSMO is the Split Linear Fit program. These two
FORTRAN programs are designed to produce cutput in any one of

following three forms:
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1. a CMS data file;
an APL, "A Programming Language,'

' variable;

graphs produced with the IBM GRAFSTAT! statistical graphics

package [Ref. 12].
These programs are written for use by any individual who has access to
the IBM 3033. With simple commands the user can create or access an
APL workspace and create an APL variable that stores the smooth
output. Access to the GRAFSTAT graphics package is easy and done
without exiting the smoothing program. Creation of a CMS file is even
easier. GRAFSTAT is a graphics package which is an experimental
program available at the Naval Postgraduate [Ref. 12].

Complete user instructions on how to use SUPSMO and SPLITSMO
are available in Chapter VI and VII. Mathematical details on the the
Supersmoother and the Split Linear Fit are presented in Chapters II
and III, respectively. In Chapter IV are the evaluation results from
smoothing three simple sets of data with these two advanced smoothers.
These smoothing results are compared to the smoothing produced by
previously verified smoothers, e.g. LOWESS and Moving Average. In
Chapter V a real application of the Supersmoother and the Split Linear
Fit programs is presented. The Granite Canyon Daily Sea-Surface
Temperature data for the period of March 1971 to February 1983 is used
in the analysis presented in Chapter V. This data set is used because
of the large size of the series, 4380 points; because the variance may
not be constant, and because the complex underlying function seems to

contain some periodicity.

lGRAFSTAT is an experimental APL package from IBM which the
Naval Postgraduate School is using under an agreement with the IBM
Research Center, Yorkstown Heights, N. Y.
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II. TECHNICAL DESCRIPTION OF SUPERSMOOTHER ALGORITHM

A. OVERVIEW

The data smoothing algorithm, Supersmoother, was developed at
Stanford University by Jerome H. Friedman and Werner Stuetzle
[Ref. 9]. The smoothing technique uses local averaging [Ref. 9: p.
3], local linear fitting [Ref. 9: p. 3], and selection of a local optimal
span [Ref. 9: p. 8], i.e. application of method of cross-validation
[Ref. 9: p. 1]. The developers claim that Supersmoother is "both very
flexible and rapidly computable" [Ref. 9: p. 3]. One of the features
which makes Supersmoother flexible is that Supersmoother is scale inde-
pendent. In other words, the X wvalues must be equi-spacec but can
belong to the interval (0.0, 1.0] or the interval [1.0, 2.0, 3.0, -
N], where N is the number of point values to be smoothed, while the Y
values must be real values and need not be equi-spaced. Another
feature which makes Supersmoother flexible is that there is an option of
entering one or three global span values where these values are entered
as a ratio of the span to the number of points to be smoothed.
Another flexibility feature is that there is an outlier rejection rule
which allows the user to adjust the degree of robustness using an index
within the interval [0.0, 10.0], where 0.0 indicates robust smoothing
and 10.0 indicates non-robust smoothing. Supersmoother uses a small
amount of romputer time and of storage space by using computation and
data storage procedures commonly used in dynamic programming, i.e.

FI-l(X) is used to update F{(X) and only the new value is stored.

The objective of Supersmoother is to efficiently smooth a scatterplot
[Ref. 9: p. 1]. Supersmoother consists of two subroutines, the
Combining Subroutine and the Smoothing Subroutine, see Figure 2.1.
The Combining Subroutine and the Smoothing Subroutine exchange data
arrays once if only one span value is used and eight times if three

span values are used.
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Qutput
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Figure 2.1 Supersmoother Subroutines.

Figure 2.2 shows the flow of data within the Supersnioother algo-
rithm. The Combining Subroutine receives the data to be smoothed and
other pertinent parameters and sets up the data for transmission to the
Smoothing Subroutine. The Smoothing Subroutine smoothes the data
array three times, using each span value once, and then computes the
residual values corresponding to the three smoothed arrays. Then each
array of residual values is smoothed using SPAN, in order to reduce
the total variability and create smooth transitions between adjacent resi-
dual values. The smoothed residual values are then returned to the
Combining Subroutine where the optimal span values are determined and
adjusted using the outlier rejection rule. The adjusted optimal span
values are then sent back to the Smoothing Subroutine for smoothing
with SPAN,. This is done so that variability between the values will
again be reduced. The now smoothed, adjusted, optimal span wvalues
are returned to the Combining Subroutine where they are used in an
interpolation procedure. The results of this interpolation procedure are
estimates of the final smoothed values. These estimated smoothed
values are then returned to the Smoothing Subroutine for smoothing

with SPAN; jn order to reduce the variability of these values. This
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procedure will also accentuate outliers in the raw data because of the
small neighborhood size of SPAN;. The final smoothed values are
returned to the Combining Subroutine which forwards the results to the

user's main program for his/her use.

The Combining Subroutine does the following:

1. keeps track of pertinent computational results;

computes the interquartile range of the abscissa;

defines zero for computational and comparative purposes;

determines the optimal span corresponding to each abscissa;

[S2 B~ SN VLI V)

applies the outlier rejection rule in order to adjust the
robustness;

6. estimates the smoothed output.
If only one span value is used, only the first three items of the above
list are executed by the Combining Subroutine, and the Smoothing
Subroutine is used only once. If three span values are used, all the

items are executed.

The smoothed output produced by the Smoothing Subroutine is not
the final smoothed values given to the user. Therefore, to be able to
distinguish the output forwarded to the user, i.e. the smoothed Y
values, from the smoothed values exchanged between the subroutines,
any array to be smoothed by the Smoothing Subroutine, e.g. the resi-
dual values, will be called Z within the Smoothing Subroutine. Z.

After the array is smoothed and returned to the Combining Subroutine,

it regains it's usual name. The Smoothing Subroutine does the
following:
1. computes the neighborhood size, (IT), the number of points to

be included in the local averaging;

2. computes the base mean, variance, and covariance values that
will be used in the computation of the smoothed values Zr;

3. computes the smoothed values Z; at the beginning of the data
array, i.e. the first (IT/2) smoothed points that are not

usually computed by most smoothers;
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h. 4. computes the smoothed values Z; for the middle of the data
- array;
: 5. computes the smoothed values Z; for the end of the data set,

i.e. the last (IT/2) smoothed points that are not usually
computed by most smoothers,

The smoothed values Z; are the result of a local linear fit within the
neighborhood of points about Xy, the abscissa corresponding to the
smoothed Z;. The Smoothing Subroutine computes the cross-validated

- residuals only at the time when the input data is smoothed, see Figure
' 2.2.

B. MATHEMATICAL DETAILS---COMBINING SUBROUTINE

The Combining Subroutine requires the following user input:

1. N, the number of points to be smoothed;

2. Yy, - .., Yy, the point values that need smoothing;

{ 3. X1 ¢ - XN, the abscissa corresponding to the Y values if

_f: the abscissa do not belong to the interval [1.0, 2.0, .

33 Nl; -

}_f 4, IPER, equals 1 or 2, to indicate that the abscissa belong to the
interval {1.0, 2.0, . . ., N] or the interval (0.0, 1.0],

;:- ' respectively; '

;:';' 5. the span values SPAN;, SPAN,, and SPANj;

ALPHA, the outlier rejection rule index.

) The Smoothing Subroutine assumes that the input data set is in chrono-
'i' logical order , i.e. Yy occurred before Yj,; where I=1, ., (N-1);
& thus, the abscissa will be in increasing order.

5 The abscissa interquartile range, SCALE, is computed using equa-
tions 2.1 through 2.3:
o N (2.1)

- 4
{

3 J=3x1; (2.2)
*
;
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N SCALE = X, - Xy . (2.3)
[
‘<

If N<4 and if the computer allows indices with wvalue of zero, then
SCALE=0.0, otherwise an error is created. In order to define zero,
VSMLSQ, SCALE must be greater than zero. If SCALE<0.0, then J=J+1
: and SCALE is recomputed using equation 2.3. Zero is defined by
equation 2.4:

VSMLSQ = [(1x10"%)xSCALE}]® . (2.4)

A If only one span value is used, the Smoothing Subroutine is called
by the Combining Subroutine, and the smoothed data array returned is
the smoothed YI, see Figure 2.1, If this procedure is used, the
smoothed Y| will have too much variability [Ref. 9: p. 9] and will be

very robust, so it is best to use three span values.

When three span values are used, the input Y; are smoothed three
times, once with each span value, see Figure 2.2. For ease of discus-
sion, Y;g will be used to indicate the ith input Y value smoothed using
SPANS, where I=1, . . ., N and S=1, 2, 3. As mentioned before,
during the smoothing of the input Yy, cross-validated residual values
are computed. These residual values will be identified by ACVRIS, i.e.
\.:'.3 the Ith cross-validated residual computed when SPANS was used. In
order to reduce the variability of the smoothed Yy, the ACVR;g are
T smoothed using SPAN,, see Figure 2.2. For stability reasons an array
containing the absolute value of the ACVR[g is smoothed. [Ref. 9: p.
9]. After the smoothing of the absolute value of the ACVR[g, each
abscissa X1, has the following seven corresponding values:

1. the input Yy;

_ 2 YIl and ACVRIl;

” 4 Y13 and ACVR,.
AT
',:‘.-f. Next follows the basis of the local cross-validation method. First
«‘::::j for each I the minimum of ACVR, ACVRy,, and ACVRI is selected and
~"4

.
« M
Pl S
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designated ACVR ;.. Recalling that the second subscript of ACVR(g
indicates the SPANg used to smooth the input data set and produce the
corresponding ACVR;g, then the SPANg used to produce ACVR;, can
be determined and designated SCI. Then the outlier rejection which
consists of equations 2.5 and 2.6, shown below, can be used to adjust
SCI, i.e. the span value used to compute ACVRmin' in order to reflect
the degree of robustness desired by the user:

SC; = SCy + (SPAN; - SC;) x AM!00-ALPHA (2.5)
where
ACVR,,
= -7 min
AM ABS[ma.x(l.OxlO , _ACVR,, )] . (2.6)

The resulting SCy is called the "estimated optimal span" [Ref. 9: p. 10]
corresponding to I. The set of estimated optimal spans may have an
unnecessarily high variance, thus they are smoothed using SPANZ ; the

result is the set of optimal spans, SCI.

Each SC; value is checked using one of the two following logical
statements in order to verify that the span boundaries fixed by the
user are not violated:

1. if SC;sSPAN,, then SC;=SPAN; or;

2. if SC;2SPAN,, then SC[=SPANj;.

Each SC; value is used to estimate a smooth Yp value by interpolating
between two of the Y;q values previously computed. The sign and

value of F in equation 2.7 forms the basis of the interpolation.
F = SC; - SPAN, . (2.7

If F is negative then equations 2.8 and 2.9, shown below, are used to
estimate the smooth YI;

-F

F= -
SPAN,; - SPAN, '

(2.8)
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:":. estimated smooth Yy = (1.0 — F)xY/? + [FxYy| . (2.9)
' -. otherwise equations 2.10 and 2.11, shown below, are used:
2
- Fe s (2.10)
: SPAN; - SPAN,
b
. estimated smooth Yy = (1.0 — F)xY)*} = 'FxYy,! . (2.11)
=~
-‘ The final smooth Y; values are obtained by smoothing the estimated
; Z';? smooth Y; using SPAN;. This smoothing is done in order to reduce the
variability of the estimated smooth Yy caused by the wvariance in the
- input data.
C. IIV%%‘HEMATICAL DETAILS---SMOOTHING SUBROUTINE, PRIMARY
A The primary use of the Smoothing Subroutine is to smooth data with
abscissa values in the interval [1,0, 2.0, . . ., N]. The secondary
use of the Smoothing Subroutine is to smooth data with abscissa values
in the interval (0.0, 1.0]. The Smoothing Subroutine requires that the
A following data be transferred from the Combining Subroutine:
1. N, the number of points to be smoothed;
1’_2;'_ 2. the array to be smoothed, in this subroutine this array will be
referred to as 2y, . . ., Zn;
T 3. Xy, . . ., Xy, the abscissa that correspond to the Zi;
b - 4. SPAN, the span value;
5. a flag, IPER, which indicates whether the cross-validated resi-
' " duals are to be computed or not computed;
6. VSMLSQ, the defined value of zero.
.'::: The size of the neighborhood of points included in the local aver-
;:‘;','-z aging is determined by SPAN. Most smoothers will not compute the size
‘_,,_ of the neighborhood and require that the user enter an odd integer
::_-‘E:: number indicating the size of the neighborhood. Supersmoother will
'.’-::j:: compute the size of the neighborhood, thus allowing the user an infinite
:\:Z:::Z number of choices, since the value of SPAN, as entered by the user,
1o
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belongs to the interval (0.0, 1.0]. Since the computation of the neigh-
borhood results in an integer value, different SPAN value entries may
result in the same neighborhood size, e.g. if N=100, then SPAN values
of 0.04 and 0.045 will both result in a neighborhood size of 4.
Supersmoother uses two neighborhood sizes, IBW and IT, both integer
values. The first (IBW+1) smoothed points and the last IBW smoothed
points of the output Z array are computed differently than the central
smoothed points. Most smoothers drop IBW points at the beginning and
at the end of the smoothed Z array, e.g. the Moving Average smoother
mentioned in Chapter I. IT is the number of points included in the
local averaging. These IT points are the nearest neighbors of XI, the
abscissa corresponding to the smoothed point being computed.
Supersmoother will always compute IT to be an odd integer. IBW, on
the other hand, sometimes may be odd or even, depending on the value
of N and SPAN. Since IT is odd, the X; will be the median of the
neighborhood with L(IT/2), integer division, points to the left and
right. The following two equations are used in the computation of the
neighborhoods, IBW and IT:

IBW = (0.5xSPANXN) - 0.5 ; ) (2.12)
IT = (2-IBW) -1 . (2.13)

The first IT values of the X and Z arrays are used to compute the

base or initial values of Xmean' Z covariance of X and Z, and

mean’
variance of X using equations 2.14 through 2.17:

R L B (2.14)

= - (2.15)

31

P A T .t et e " oo . D R e . .- L - P I - [ T
) e e e S Do _”._.'_\'_' - . A 4. ".-‘_'v.' N . PR . B L. LI - ..

L PRI P . e PR 2 “ Nt . Y . o R N PR Ly . .
. . e s A e e L Te T . . R ARy - N _ P o .‘...‘“h-“
KPP P AP P . (55" GRE WS, JUE G- 1PV 1. PRPE PN . 0N A PITPEVII ST . o ¥, PRV \ P "

.......
Y




IT
COVyz = 31X = Xnua) (2 = Zauu] (2.16)
=1
IT
VARy = 22X ~ Xpuu)? - (2.17)
=1

The first (IBW+1) smooth ZI are computed using the results from equa-
tions .2.14 through 2.17. The first step in the computation of these
smooth Zy is to find the slope, A, of the least squares straight line
through the set of points (X4, Z;), . . ., (Xyp, Zpp) [Ref. 9: p. 3].
If VARXSVSMLSQ, then A=0.0, otherwise equation 2.18 is used:

COVy,
~ VARy

(2.18)

The second step is the actual computation of the smooth Z; using the
clope, A, computed with equation 2.18, the results from equations 2.14

and 2.15 and the following linear equation:
smooth Z; = Ax{X; = Xpean) = Zmean - (2.19)

The cross-validated residual, ACVR[, are computed using the following
procedure:
1. compute the portion of the neighborhood occupied by the

smooth point, H, using equation 2.20:
g= 10 . (2.20)

2. if VARX>VSMLSQ, then this large degree of variability inherent

in the raw data must be reflected in H using equation 2.21:

(xl - xmun)2

H=H -~ ——__meen] 2.21
H VARy ‘ ( )
3. finally the cross-validated residuals are computed with equation
2.22:

.'\BS(Z' — smooth Z])

2
10 - H (2.22)

ACVR, =
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Recall that only the first (IBW+1) smoothed Z; values have been
computed.

In order to compute the smoothed ZIBW*l' o ZN-IBW' the
neighborhood of points has to be moved from one point to the next
point toward the right. This is where the dynamic programming
computational procedures are useful in cutting the storage space and
computer time. The results from equations 2.14 through 2.17 are
updated to reflect the movement of the neighborhood, i.e. the left
endpoint of the neighborhood will be dropped and the point to the right
of the right endpoint will enter the neighborhood. Equations 2.23
through 2.30 are used for each I, where I=(IBW+1), . . ., (N-IBW).
Equations 2.23 through 2.26 are used to drop a point from the
neighborhood:

_ (]TXX-M,.,,) - Xj-mr

Xmean IT - 1 ; (2.23)

”T s zmun) - ZI—TT

= (2.24)
Zmea IT - 1
L e e U R A (2.25)
Covxz = CO\ Xz — IT — 1 ]
IT ~ (- - Xmun)2
VAR = VARy - (Mm (2.26)

IT -1

Equations 2.27 through 2.30 are used to add a point to the
neighborhood:

. (IT = 1) 2 Xpean — Xi 5 0
X = . een : 2.27
mean IT ' ( )




_ 0T = 1)xZmewa) + %1

= . (2.28)
zmcu IT )
ITx(X| - xmun - Z'nun
COVyg = COVyg 4 —tX A% = Tnew) (2.29)
IT-1
VARy = VAR ITX(XI - xmun)z
ARy = VARy - IT =1 . (2.30)

The results from equations 2.27 through 2.30 are then used in equa-
tions 2.18 through 2.22 to compute the smoothed Z; and the cross-
validated residuals if necessary.

The X can’ Zmean’ COVXZ, and VARX values used to compute
smooth ZN-IBW are used to compute the smooth ZI values where
I=(N-IBW+1), . . ., N, i.e. the smooth values at the tail-end of the Z
array. These mean and variance values are used in equations 2.18
through 2.22 in the computation of the smooth Z;. This procedure is
equivalent to the procedure used to compute the smooth Z;, where I=1,

., (IBW+1).

D. MATHEMATICAL DETAILS---SMOOTHING SUBROUTINE,
SECONDARY USE

The secondary use of the Smoothing Subroutine is to smooth data
with abscissa values in the interval (0.0, 1.0]. The Smoothing
Subroutine needs the same data and follows the same steps and equa-
tions as if the abscissa were in the interval [1.0, 2.0, . . ., N]. The

exceptions are noted in this section.

When using equations 2.14 through 2.17, the first IBW points and
the last (IBW+1) points of the X and Z data arrays are used to compute

the initial X_oa0, Zmean:

values. Equations 2.14 through 2.17 are then changed in order to

covariance of X and Z, and the variance of X

allow these new points to be involved in the computations. Equations
2.31 through 2.34, shown below, are the result of the change and are

used in the computation of the initial values of Xmeanr Z covari-

mean’
ance of X and Z and variance of X:

) x

X; X,
X _ J=N-BWer s . (2.31)
mean IBW -1 IBW '
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. =N-[BW+] Jal
) . .32
¥?: Ina = Bw o1 T BW (2.32)
v
ro
= N Bw
: COVxz = E (x.l - ann)x(z.l = Zmew)— E (XJ - xmu.n)x(z.l - chm) 1(233)
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vARX = 2 (XJ - xmnn). - Z(XJ - kmtm). . (2.34)
JaN-[RW+) J=1

the neighborhood.

2.31 through 2.34.

In the previous Section,

computed at the beginning of the computations.

”T'Xmun) - XK - 1.0

The next step in this smoothing procedure is to drop a point from

equations 2.23 through

2.26 were used for this task, but they cannot be used in this section

because the input point counter indicates that negative index valués are

The negative indices

are the result of the last (IBW+1l) point being being used in equations

Thus to keep the point counter on track let

K=N+I-IBW-1 and change equations 2.23 through 2.26 as indicated in
equations 2.35 through 2.38,

respectively. Then in order to drop a

point from the neighborhood, equations 2.35 through 2.38 are used:

“*mean

(IT’(Zmnn) - ZK - 1.0

Zmrtn

COVyz = COVygy—~

VARy = VARy -

o) ; (2.35)
) : (2.36)
ITx(Xk ~ 1.0 —ITX,:.;..)x(Zx = Znew) (2.37)

IT> (Xk - 1.0 =~ Xpeuo)? (2.38)

Cl I ST D

IT -1
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Since a point was dropped from the neighborhood the next adjacent
point on the right boundary of the neighborhood must be entered into
the neighborhood. In the previous Section, equations 2.27 through
2.30 performed this task, but in order to keep the point counter on
track these equations must be modified. Therefore, let K=I+IBW and
the new equations are equations 2.39 through 2.42. Thus to add the

next point to the neighborhood, these new equations are used:

[oT - 1)xxm,.n] - Xx

NXnmean = T V (2.39)
[T = 1% - 2
Zoewg = A , : (2.40)
IT
]T X - xme /\X Z s Zmnn
COVyz = COVyz - X e X1 2 ), (2.41)
IT - 1
IT-(Xg - ann ?
VARy = VARy - (X T (2.42)

IT -1

The results produced by equations 2.39 through 2.42 are then used
in equations 2.18 through 2.22 to compute the smooth Z;, where I=1,
., (IBW+1).

In order to compute the middle smooth ZI values, i.e. smooth ZI
where I=(IBW+2), . . ., (N-IBW), equations 2.23 through 2.30 and
equations 2.18 through 2.22 are used as they are, i.e. no changes

involved.

The computation of the last (IBW-1) smooth Z; values, i.e. smooth
Z; where [=(N-IBW-1l), . . ., N, involves changing equations 2.23
through 2.26 a second time, in order to maintain the point counter on

track. This change is needed because the first (IBW-1) input points

36




— e s fa s, n. S e vt e e e A Bas s Sos fea S e e iy
et Tl B B A A s s 8 i aliem it w Aed ek encies o e e a bt Sen ta edds s int g Rartlia o St i eSS A A e MEaiata IRSABAS,
™

h.“
| -

3 are used to compute these smooth Z; and the point counter must not
exceed N, the number of points to be smoothed. Thus let K=[+IBW-N
and the result of the change is shown in equations 2.43 through 2.46.
Equations 2.44 through 2.46 are used to drop a point from the

neighborhood:
Nmeen = ”Txx’“'l‘fr) — ]XK WL (2.43)
Zmean = “TKZ'“I‘;.’_— lz,( -0 (2.44)
COVss = COVy — IT~(Xg - 1.0 -‘Txr,,;)x(zk = Zomean] (2..45)
VARy = VARy T (X 10 - Xmews)” (2.46)

IT -1

In order to replace the point dropped from the neighborhood, equa-

tions 2.27 through 2.30 are used, but in a different form because of \

the same reason that equations 2.23 through 2.26 were changed above.
Therefore, with K=I-IBW-1 the equations used to add a point to the \

neighborhood are equations 2.47 through 2.50:

(1T = 1% Xaeaa] = X

) . 2.47
xmun IT ' ( )
(IT - 1)~ Zmu.n] -1
7 - [ * (2.48)
meso IT '
IT -~ (X - xmnn) x (Z}( - Zmuu)
COVyxz = COVyz ~ - ; (2.49)

IT -1
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o VARy = VARy - IT"‘T; _ 1{

m!ln)z

(2.50)

--t The results produced by equations 2.47 through 2.50 are then used
o in equations 2.18 through 2.22 in order to compute the smooth Z; where
[=(N-IBW+1), . . ., N. The disadvantage of using abscissa values
from the interval (0.0, 1.0] versus abscissa from the interval [1.0,
‘." 2.0, . . ., N] is that a slight degree of distortion is produced at the
ends of the smoothed Z array. The distortion could be caused by the

\ 1.0 adjustment factor in equations 2.35, 2.36, 2.43, and 2.44.

E. SELECTION OF SPAN

The span value is the parameter that controls the smoothing of a
data set. There exist no set procedures for selecting a span value.
Each data analyst has his/her own method of selecting the span value.
» The analyst's experience with smoothers determines how the span is
L selected. Selection of the span value is basically a subjective process,
.7 where the analyst uses a span value which gives adequate and useful
results. The user of the advanced smoothers should develop a consis-
tent, span selection process. A common procedure used by some expert
j:ﬁ:_f:.' smoothers starts by looking at a scatterplot of the raw data. Then the
analyst looks for periodicity and cyclic changes present in the data.

| This information is then used to estimate the span value to be used in
. the smoothing. For example, if a data set displays a cycle of about 24
- points, then the span to use should be about 24/N, where N is number
of points to be smoothed. This span value is a good estimate because
the raw data is permitted to determine the shape of the smooth results.
Py - This procedure is used in Chapter V of this thesis in the smoothing of

a large set of sea-surface temperatures.

Supersmoother is unique among smoothing algorithms in that three

‘ span values, i.e. SPANl, SPANZ, and SPAN3, may be entered by the
user. Supersmoother will then select an optimal span value within the

range of the smallest span value and the largest span value by using

the method of cross-validation which was explained earlier in this

Chapter. This option within Supersmoother lets the user be very
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flexible in the selection of the span values to use. But the user must
be careful about which span values to use with Supersmoother. It is
best to first try span values of 0.05, 0.2, and 0.5, as recommended by
Friedman and Stuetzle [Ref. 9: p. 9]. This range of span values gives
Supersmoother good coverage of the data. After viewing the results
produced by Supersmoother, the user can adjust the span values in
order to get the desired smooth effect. When adjusting, the user must
bear in mind the bias/variance trade-off discuss earlier in this chapter.
The trade-off being that if the span value is increased, then result is a
smoother looking curve, while the reverse occurs when decreasing the

span value.

No matter what rule is followed to determine the span values used in
Supersmoother, the final smooth results accepted are based on subjec-

tive needs, applications, and preferences.
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P I1I. TECHNICAL DESCRIPTION OF SPLIT LINEAR FIT ALGORITHM
A. OVERVIEW

The Split Linear Fit smoothing algorithm was developed at Stanford
University by John A. McDonald and Art B. Owen. [Ref. 10]. The
Split Linear Fit smoother produces piece-wise smooth curves and thus
will depict discontinuities present in the input data [Ref. 10: p. 1].
:; Most smoothers tend to distort discontinuities because the weighted
B averaging technique used to compute a smoothed point requires a

| continuous underlying function. The Split Linear Fit smoother will not
f-': distort the smooth curve at discontinuous points and does a very good
job of detecting sharp slopes in the input data. This is the reason the
h h Split Linear Fit algorithm is sometimes classified as an edge-detecting
smoother [Ref. 10: p. 2].

The Split Linear Fit smoother is similar to Friedman and Stuetzle's

_—‘_:-". Supersmoother in several ways:

‘:"‘-j 1. every input point receives a respective smooth point;

. 2. the user can enter more than one neighborhood size; in this
z::j: algorithm the neighborhood sizes are called window sizes, where
N window of size K is defined as "a set of K successive point"
N [Ref. 10: p. 2], (window size and span are equivalent terms);
3. the window is shifted to the right by dropping the left
endpoint and then adding the point adjacent to the right
~ '_::_-;.' endpoint;

':';" 4, the method of least squares is used to estimate a straight line
i‘ through the points within the shifting window;

.._ 5. the Split Linear Fit smoother is scale independent.

:}‘. A major difference between the Split Linear Fit smoother and
-\ Supersmoother is the method used to combine the linear fitted wvalues.
" Another difference is that the Split linear Fit smoother does only robust
Ei’-j smoothing.

“a
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:3:'.: The objective of the Split Linear Fit smoother is to produce a piece-
:_-lj wise smoothed curve with minimal discontinuous features [Ref. 10: p.
- 2]. Figure 3.1 shows the Split Linear Fit smoothing algorithm as
- composed of three subroutines:
- 1. the Regression Subroutine;
'.j"-'. 2. the Weighting Subroutine;
3. the Combining Subroutine.
h“"
\.\'
o
» Input
Regression Regression
Subroutine Subroutine
v Weighting Weighting
Subroutine Subroutine
Combining Combining
Subroutine Subroutine
_I:E; Primary Output Final
O L Qutput
)
Figure 3.1 Data Flow in Split Linear Fit Smoother.
:‘f:: Figure 3.1 also shows that the Split Linear Fit smoother uses the itera-
-f-",: tive process once on its output. This is done in order to decrease the
‘ variance in the first set of output, since, as mentioned before, the
v Split Linear Fit smoother only does robust smoothing. If the first set
of output were to be plotted, the curve would appear very jagged.
e Passing the first set of output through the Split Linear Fit algorithm,
- decreases the robustness and variability of the final output.
e 41




.
The number of window sizes entered by the user dictates the
I:S number of times that the input data is passed through the Regression
- Subroutine to produce a family of linear fitted wvalues and residual
values associated with each I, I=1, . . ., N, where N is the number of
points to be smoothed, see Figure 3.2. Each family of linear fits may
3{1' be viewed as a pseudo-distribution of linearly fitted estimated values -of
" an input point value.

N

w Input

N .——{ Select window size

For each input point, compute
linear fitted values and
mean squared residual values

Last
- " No window
- size
*'\ ?
, J
N families of

linear fitted values and
- mean squared residual values
::j: to Weighting Subroutine
Xk Figure 3.2 Regression Subroutine in Generalized Form.
o 42
et




:E‘.‘_éfj The Weighting Subroutine receives the N families of linear fits and
mean squared residual values from the Regression Subroutine and finds
the minimum mean squared residual value within each family of mean
squared residual values. Not all the mean squared residual values
qualify as candidates for the minimum mean squared residual values.
An acceptable mean squared residual value is one that does not exceed
an established cutoff value. The cutoff value used in the Split Linear
Fit algorithm is the wvalue -1.0x10%0,  This value was selected because
it provided a better smooth curve at discontinuities inherent in the
raw, input data than other cutoff values [Ref. 10: p. 3]. The minimum
mean squared residual value is used as a base to compute a weight
corresponding to each of the acceptable mean squared residual values
within the family, see Figure 3.3. These weights are used by the

Combining Subroutine in computing the smooth peint values. The

LABA L i AL
A L e e e
K AT

weights "depend on a measure of the quality of the corresponding linear
fits" [Ref. 10: p. 2]. Quality meaning that the smaller the mean
squared residual value the higher the weight assigned to the corre-
sponding fitted value. The weight assigned to a fitted value is a func-

tion of the following:

1. the corresponding mean squared residual;
2. the minimum mean squared residual, and;
3. the average of the acceptable mean squared residuals within the

associated window.
This weighting procedure is used in order to smoothly integrate discon-
tinuities in the input data with the other smooth points. This proce-

dure is the edge-detector and is the cause of the robust smoothing.

The smooth point value at I is a weighted average of the linear fits
in the family of linear fits corresponding to 1. The Combining
Subroutine combines the weights produced by the Weighting Subroutine
and the fitted values produced by the Regression Subroutine associated

with I and computes the respective smooth point value, see Figure 3.4.

As mentioned before the first set of smooth point values produced

by the Combining Subroutine is itself passed through the Split Linear
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Input from
Regression
Subroutine

=S

For Ith family find
minimum meaon squared
residual vaiue

|

Compute weight
corresponding to
each mean squared
residuagl vaiue in
Ith family

Yoo 15N

N farmihies of
weights to
Combining
Subrgoutine

Figure 3.3 Weighting Subroutine in Generalized Form.

Fit algorithm again in order to reduce the variability. The second set

of smooth point values is the output generated to the user, see Figure
3.1.

B. MATHEMATICAL DETAILS---REGRESSION SUBROUTINE

The Regression Subroutine requires the following user input:
1. N, the number of points to be smoothed;

2. Yl, . YN, the point values to be smoothed (in chronolo-
gical order);
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input from
Weighting
Subroutine

Select Ith family of
57— linear fitted values
and weights

|

Compute Ith
smooth point value

I

I=]+1

?

No
Qutput

Figure 3.4 Combining Subroutine in Generalized Form.

3. Xy, oo . Xy, the abscissa corresponding to the Y values (in
ascending order since the Y are in chronological order);
NTRYS, the number of window sizes to be used;

WNSZy, . . o, WNSZNTRYS' the values of the window sizes;
MNWNSZ, the minimum window size permitted by the user.
The minimum window size, MNWNSZ, is the lower bound set on the
window size. The value of the lower bound should be at most one-half
the value of the smallest window that will be used in the smoothing. If
MNWNSZ is any larger then some smooth points will be dropped from the

ends of the output array, or a plot of the smooth point values will show
distortion at the ends.
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Figure 3.2 shows the Regression Subroutine using a procedure
resembling the iterative process, but each pass of the Y;j values
: through the Regression Subroutine uses a different window size, and
some variables are reset to zero. The purpose of the Regression
. . Subroutine is to compute a family of fitted values and a family of mean

., N. The
Regression Subroutine is shown in more detail in Figure 3.5. The

squared residual values corresponding to each [, I= 1,

Regression Subroutine can be divided into three parts:
X 1. definition of zero and computation of sum of first (MNWNSZ-1)

values and computation of fitted wvalues for I=1,
' (MNWNSZ-1);

A

2. shifting of window and computation of fitted values and mean
' squared residual values for I=MNWNSZ, . . ., (N-MNWNSZ+1);
- 3. computation of fitted values for I=(N-MNWNSZ+2), . . ., N.

The variable EPS is used to define zero for computational purposes.
The interquartile range of the abscissa array is used in the computation

of EPS, as shown by equations 3.1 through 3.3:

JL:E
4

; (3.1)

JR = 3xJL ; (3.2)

EPS= X;p—- A0 - (3.3)

If EPS<0.0 and JR<N, then EPS is recomputed using the following three
;f:'_'-_ rules:

-, 1. if JR<N, then JR is increased by a value of one;

; 2. if JL>1, then JL is decreased by a value of one;
‘_:-_f: 3. EPS is recomputed using the new values of JR and JL and
’- equation 3.3.
L EPS will be equal to zero only if N<3 and if the computer allows index
,; - values equal to zero, otherwise a computer error will result. If this

situation occurs then items 1 and 3 from above will apply. Since the X1

" values are in ascending order, EPS will have a value greater than zero
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after the first recomputation of JR. After EPS has been defined as
being greater than zero, it is adjusted using equation 3.4 in order to

define zero for computational purposes:

EPS = (EPS x1.0x107'9? (3.4)

In order to fit a linear model on the window endpoints and central
point, slope, and y-intercept values of the model must first be
computed. The parameter MNWNSZ dictates which input point values
will be used to compute the initial slope and the corresponding
y-intercept value. The first MNWNSZ values of the input data are used
to compute these necessary values. The first (MNWNSZ-1) values of
the input data are used in equations 3.5 through 3.10 to compute the

basic sum values to be used later and increment a counter which keeps
track of the input points: .

MNWNSZ-1
SUMy = X ; (3.5)
l=1
MNWNSZ-1
SL..\iy = E \'I N (3.6)
1=1
KOUNTER = MNWNSZ - 1 ; (3.7)
MNWNSZ-1
SUMxsq= 2 X/ (3.8)
1=1
MNWNS2-1
SUMysq= ¥ Y/ (3.9)

I=1
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:
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[Delete left endpoint from window |
!

Add next

Last
window
size
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Qutput to
Weighting

Subroutine

Figure 3.5 Data Flow in the Regression Subroutine.
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MNWNSZ-1
SUMyxy = E (XyxYy) . (3.10)

1=1

For each I=1, ., (MNWNSZ-1), the right endpoint fitted value and
the mean squared residual value are set to the wvalue of —l.OX1030.
This is done so that the Weighting Subroutine will assign a zero weight
to the left endpoint fitted values and the mean squared residual values
corresponding to these I. Therefore, the smooth values corresponding
to there I values are computed using a smaller window [Ref. 10: p. 3].
This procedure does not use the window concept that is mentioned
below. This is done to avoid computer errors since most of the points

in the window corresponding to these I will have negative index values.

Figure 3.5 shows the iterative process that is used to compute the
family of fitted values and the family of mean squared residual values
corresponding to I, I=MNWNSZ, . . ., (N-MNWNSZ+1). The first step
determines the window central point and the endpoints that correspond
to I. For ease of understanding, let K be the number of successive
points in the window. If K is odd then the central point is equivalent
to the median of the window and has L (K/2) neighboring points to the
left and right of it. If K is an even number, then the central point is
will have [(K/2)-11 neighboring points to the left and (XK/2) neigh-
boring points to the right, thus the central point is the point to left of
the window median. The index of the right endpoint will always be
equal to I. If K is odd, the index of the central point will be equal to
[I- L(K/2)], and the index of the left endpoint will be equal to
(I-K+1). If the value of K is even, the index of the central point will
be equal to [I-(K/2)], and the index of the left endpoint will be equal
to (I-K+1). Point values that have corresponding index values that are

negative or zero are not included in the linear fit.

The next step adds the ith point to the window and uses the
method of least squares to estimate the straight line through the points
in the window. The procedure for adding the Ith point to the neigh-
borhood adds the values produced by equations 3.5 through 3.10 to the
X1 and the Y values using equations 3.11 through 3.16:
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SUMy = SUMy = X, (3.11)
SUMy = SUMy - Y, ; | (3.12)
KOUNTER = KOUNTER + 1 ; (3.13)
SUMysq = SUMysq = X{* (3.14)
SUMysq = SUMysq + Y7 ; (3.15)
SUMyy = SUMXY"‘*' (XixYy) . (3.16)

Next the mean of the sum values computed by equations 3.11 through
3.16 is computed using the value of KOUNTER as the denominator in
equations 3.17 through 3.21:

MEAN SUMx '
MEAR = KOUNTER (3.17)
SUMy
N A. = A ———— M 3. 18
MEANY = YOUNTER ° (3.18)
Nysg = ———— 3.19
MEANxse = {GUNTER ( )
) SUMysq
MEANysq = KOUNTER (3.20)
SUMyy
MEANygy = ———e— .21
MEANXy = KOUNTER (3.21)
The variance of the abscissa is derived by equation 3.22:
XVAR = MEANysq - MEAN] (3.22)

The method of least squares is used to compute the slope and the

y-intercept of the straight line fitted to the points in the window. The
results produced by equations 3.17 through 3.18 are used to compute

the coefficients of the straight line that is fitted to the points within
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= the window. If XVAR<0.0, then the slope of the straight line, SLOPE,
o is zero, i.e. SLOPE = 0.0, otherwise the value of SLOPE is computed
)

K with equation 3.23:

MEANxy — (MEANy x MEANy)
S = . .
LOPE VAR (3.23)

The y-intercept of the straight line is computed using equation 3.24:

INTER = MEANy - (SLOPE » MEANy) . (3.24)

(]
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The mean squared residual value about the fitted line is computed with

equations 3.25 through 3.28:

MEANgsq= A+ B+ C ; , (3.25)
where

A = MEANysq ~ (2xINTERXMEANy) — (2xSLOPExMEANyy) ; (3.26)

B = INTER? + (2xINTERXSLOPExMEANy) ; (3.27)

C = MEANysqxSLOPE?® . (3.28)

The window central point and endpoints are fitted to a linear model
using the slope and the y-intercept value computed above to produce
the fitted value FITIWP, where I= current I'B value, W= current window
size, and P= left endpoint, central point, or right endpoint. The mean
squared residual value, MSQRyyp, is computed using the computed local
linear fit coefficients, the X and Y; values, and the counter value in

equations 3.29 through 3.31:

FITiwp = INTER ~ (SLOPExX}} ; (3.29)
RES = Y; - FITiwp s (3.30)
51
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. (KOUNTER xMEANgsq ) - RES?
LT \ = 3.31
- 15QRwe KOUNTER - 1 ( )
After FITIWP and MSQRyyp have been computed for the ith
~ window's central point and endpoints, the window must be shifted to
. the right. The Supersmoother algorithm uses the same procedure as
' the Split Linear Fit, i.e. dropping the left endpoint from the sum
values of equations 3.11 through 3.16 and then adding the entering
— point to these same equations. Let IL be the index of the left
S endpoint, then this point is dropped using equations 3.32 through 3.37:
\ SUMy = SUMy - N ; (3.32)
SUMy = SUMy - Y ; (3.33)
KOUNTER = KOUNTER - 1 ; (3.34)
SUMysq = SUMysq - Xg (3.35)
Sl"\"YSQ = SL\iYSQ - \'Ii ’ (336)
SUMyy = SUMyy - (Xg ~ Yo) . (3.37)
Next, I is incremented by one and, if IS(N-MNWNSZ+1), equations 3.11
' through 3.16 are used to enter the new ith peoint into window.
. Equations 3.17 through 3.37 are then repeated using the new values.
This procedure is continued until I>(N-MNWNSZ+1).
~Q When I>(N-MNWNSZ-+1), the left endpoint FIT;yp and MSQRpyp
o values corresponding to the values of I are set equal to -l.OXIOBO, SO
e
P that these fitted values are assigned no weight in the Weighting
i::-f: Subroutine. This procedure was used for I= 1, . . ., (MNWNSZ-1) at
m the beginning of the Regression Subroutine.

If the user entered more than one window size, then the input data

is passed through the Regression Subroutine with the next window size.
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The sums and counter of equations 3.5 through 3.10 are initialized to
zero before repeating the Regression Subroutine. After the last window
size has been used, each window will have contributed a total of six
values to each I, i.e. three linear fitted values and three mean squared

residual values.
C. MATHEMATICAL DETAILS---WEIGHTING SUBROUTINE

The objective of the Weighting Subroutine is to compute a weight
which is indicative of the degree of goodness of fit of each linear fitted
value, FITIWP, with respect to a line with slope equal to one. Figure
3.3 shows the procedure followed by the Weighting Subroutine. As
noted in the figure, each family of mean squared residual wvalues is
used one set at a time. The following data is transferred from the
linear Regression Subroutine:

1. N,the number of points to be smoothed;

2 NTRYS, the number of windows used in the smoothing;

3. N families of mean squared residual values, MSQRIWP;

4 N families of fitted values, FITIWP.

The Weighting Subroutine is executed once for each family of mean
squared residual values. The Regression Subroutine produced a family
of (3xNTRYS) mean squared residual values corresponding to each I.
For computational feasibility a lower bound of -1.0x10%0 is set on the
values of mean squared residual, i.e. the MSQRIWP' Each MSQRIWP
value is compared against -1.O><1030, and the MSQRIWP values less than
or equal to -1.0><1030 are marked as unacceptable. These are not
considered in the search for the minimum MSQRIWP within the Ith family
MSQRyyp. The minimum MSQRyyp corresponding to I is found by doing
a comparison between the acceptable MSQRIWP values in the Ith family
of MSQRIWP. The expressions listed below are used by the Weighting
Subroutine on each family of MSQRIWP:

1. MIN is the minimum MSQRIWP in Ith family ;

2. LAMBDA is the sum of MSQRyp greater than -1.0x10%C;

3. LAMBDA is divided by the number of MSQRyyp greater than

-1.0x1030 ;
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4. LAMBDA is then reduced by the value of MIN.
If the value of LAMBDA is less than or equal to zero, then LAMBDA is
not modified, otherwise LAMBDA is recomputed using equation 3.38:
LAMBA = —2 (3.38)
’ LAMBA
If the value of MIN is positive, MIN is not changed, otherwise it is

made a positive value using equation 3.39:
MIN = 1x10710 . (3.39)

The last step in the Weighting Subroutine is to compute a family of
weights which indicate the goodness of fit of the linear fitted wvalues,
FIT{p, using the corresponding family of MSQR[p values. The
MSQRyyp values which are less than -1.0x10%0 cause a weight of zero
to be attached to the corresponding fitted value, FITIWP'. The reason
for this occurring is that these values are considered unacceptable
based on the established cutoff wvalue discussed in Section A of this
chapter. If the MSQRIWP value satisfies the cutoff rule, then a weight
will be computed indicating the goodness of fit of the corresponding
FITyp- The weight is a function of the quality of the corresponding
MSQRyyp value. TEMP indicates the degree of quality and is computed

using equation 3.40:
TEMP = LAMBA - (MSQR;wp — MIN) . (3.40)

Recall that the smaller the value of MSQRIWP, the better the wvalue
of FIT[yp- In other words, small values of TEMP indicate a good
FITIW-P value, therefore, these fit values receive high weights. Three
conditions are used in assigning a weight that to each acceptable
MSQRyp:

1. if TEMP<0.0, then WT,p = 1.0;

2. if 0.0<TEMP<1.0, then the weight is computed using equation

3.41:
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WTiwp = (1.0 - TEMP)? ; (3.41)

3. if TEMP21.0, then WTy,p = 0.0.
According to the Split Linear Fit developer, equation 3.41 results in
"smooth transitions between zero weights and small non-zero weights"
while other functions tend not to have the desired effect [Ref. 10: p.
3]. Recall that the Weighting Subroutine is repeated for each family of
mean squared residual values and that the output is a family of weights

corresponding to each I.
D. MATHEMATICAL DETAILS---COMBINING SUBROUTINE

The objective of the Combining Subroutine is to compute the smooth
point values. The following data is transferred from the Weighting
Subroutine:

1. N, the number of points to be smoothed;

2. NTRYS, the number of bandwidths used in the smoothing;

3 N families of fitted wvalues, FIT|ywps '

4. N families of weights, WTIWP'

Before using a FITp,p value in the following computations, it is
compared to the value -1.0x1039, FIT{yp values less than or equal to
-1.0><1030 are marked as unacceptable and not used in the computations
of the corresponding smooth value. Using each family of WTyp and
FIT}p, the Combining Subroutine computes a weighted average of the
linear fitted values, FITpp. The first step in computing the th
smooth point is to use the corresponding family of FITp and WTiwp

values in equations 3.42 and 3.43:

RSUM

SEF!T;WP. fOl‘ ]= 12\‘ . (342)
w P

WSUM

]

EWT/WP' for I=1.2,....\' ' (3.43)
P

If WSUM?.I.OXIO'IO, then the Ith smooth point is produced by equation
3.44, otherwise SMOOTHj equals -1.0x1030.
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Next, I is incremented by one, and the Combining Subroutine is
repeated using the new value of I and the corresponding families of
FITIWP and WTIWP values. This procedure continues until I>N. If
these smoothed point values were plotted, the plot would show too many
peaks and would appear very jagged. In order to alleviate this
problem, these smoothed point values are used as input data to the
Regression Subroutine, and the Split Linear Fit algorithm is executed
one more time. The output of the second pass does not have as much
variability as the output from the first pass and is thus more useable

for data reduction.
E. SELECTION OF WINDOW SIZE

The section on selection of span value in the previous chapter
applies in this chapter to a great degree. Window size and span value
are equivalent terms, and both affect the smoothing to a great degree.
Since both the Supersmoother and the Split Linear Fit use local linear
regression, the relationship between a window size and the degree of
smoothing can be explained by equation 1.4, The effect on the residual
values caused by varying the window size in equation 1.4 must be kept
in mind when selecting a window size, i.e. remember the following:

1. large window sizes produce a smooth plot;

2. small window sizes produce a not so smooth plot.

What equation 1.4 is illustrating is that the degree of smoothness is the
result of a tradeoff between bias and variance in the resulting smooth
plot since it is an estimation of a function in the presence of additive
errors [Ref. 10: p. 1]. A satisfactory trade-off between bias and
variance is difficult to obtain. Better decisions can be made by looking
at a plot of the smooth output. Therefore, the user of a smoothing
program should plot the smooth output and then decide if the results
satisfy his/her needs and desires, otherwise the smoothing program is
run again with a different window size. Some people want and need
very 'smooth' and highly biased results while others want results on the

other extreme, i.e low bias and high variance.
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The above paragraph explains in general the effects produced by

using one window size, but the Split Linear Fit smoother can accept
more than one window size. By using more than one window size the
desired smooth output may be found in less time than if a single window
size had been used. The reason for this speed is that the Split Linear
Fit algorithm has more information about the shape of the raw data,
than when only one window size is used, i.e. a pseudo-distribution of
fitted values about each raw point is produced. Then the smoothed
point is computed using this additional information, i.e. a weighted-
average of the fitted wvalues. But the user needs to apply the basic
relationship between window size and degree of smoothness stated in the
above paragraph in selecting a set of window sizes, i.e. a set of 'large'

windows will produce a smoother effect than a set of 'small' windows.

According to McDonald and Owen it is best to use a set of three to
five consecutive odd window sizes [Ref. 10: pp. 2-4]. A mixture of
small and large window sizes will result in centrally smooth point values
with a slight degree of variability. In order to be able to accurately
trace the curvature of the input data, it is best to do the following:

1. roughly measure the periodicity of the input data;

2. use this value as one of the window sizes to be used in the
smoothing;

3. select the other window sizes with respect to the value of the
periodicity.

For example, if the periodicity of the input data is estimated to be 27,
then 27 is used as an input window size and the other window sizes
may be 23, 25, 29, and 31. Or the periodicity value may be either the
smallest window size or the largest window size while the other window

sizes are selected with respect to the periodicity.

The other factor that has great influence on the smooth output
produced by the Split Linear Fit is the minimum window size, MNWNSZ.
If this value is too large then the smooth output will not be what is
expected. It is best to keep the value of MNWNSZ at no more than

one-half the value of the smallest window. This subject will be
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IV. EVALUATION OF THE ADVANCED SMOOTHING ALGORITHMS

A. GENERAL

As stated in Chapter I, a smoothing algorithm may be compared to a
low-pass filter which is designed to do the following:

1. filter out "noise" from a data set and;

2. estimate the underlying functional relationship present in the

given data set.

Before proposing a 'good and efficient' smoothing algorithm to an indi-
vidual, the user must be shown that the 'good and efficient' smoothing
algorithm is robust. In other words, it is necessary to illustrate that
the smoothing algorithm performs well with most data sets, whether the

underlying function is either of the following:

1. simple like a linear function or a simple trigonometric function,
or;
2. complex and is very difficult to define mathematically.

In this chapter, the input data sets used with the Supersmoother
and the Split Linear Fit smoothing algorithms are generated from simple
known functions with Normal (0,1) "noise" added. The GRAFSTAT
[Ref. 12] functions used to generate the pseudo-random Normal (O,1)
deviates are given in Section 1 of Appendix C. The output produced
by these algorithms is evaluated in order to do the following:

1. observe how well the Normal (0,1) "noise" is filtered by the

smoother, and;

2. determine how well the true function is extracted and depicted.

In this chapter the input data sets have a constant variance of 1.
In the next chapter the input data set dose not necessarily have a
constant variance, because it is real, and the unknown underlying

function is probably too complex to define succinctly.
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B. METHODOLOGY

There is no established procedure to follow in testing the efficiency
and effectiveness of a smoothing technique/algorithm. Since the
adequacy or usefulness of he smooth output is largely based on the
user's subjective judgement of the shape of the smooth curve, i.e. a
plot of the smooth point values, the most effective method is to compare
the output produced by the new algorithm to the output produced by
previously validated, widely used, and well liked smoothing algorithms,
e.g. LOWESS [Ref. 3: pp. 94-1Ci]. The following procedure is used to
evaluate the Supersmoother and the Split Linear Fit smoothing
algorithms:

1. explain and display the data set to be smoothed;

2. display and explain the smooth results produced by the base-
line smoothing techniques/algorithms, 1i.e. Least Squares
Regression, Equal-Weight Moving Average, Cosine-Weighted
Moving Average, and LOWESS;

3. display and examine the smooth results produced by the
advanced smoothers;

4. compare these results to the previously discussed results from

2 above.

The GRAFSTAT graphics package [Ref. 12] was used to generate all
of the graphs in this thesis. GRAFSTAT was also used to do the Least

Squares Regression and the Equal-Weight Moving Average smoothing.

The Method of Least Squares tries to standardize the curves that
can be fitted to a data set. The measure of performance that is used
with this global fitting technique is the sum of squared residuals. The
Method of Least Squares produces a smooth curve which closely approx-

|

o imates the given set of data points and which minimizes the sum of
L.‘.‘

b

o squared residuals attainable with the chosen global curve. For more
,‘_.g explicit details see Spiegel [Ref. 13: pp. 258-305]. GRAFSTAT lets the
user select the type of curve that should be fitted to the given data
; set. The following listed curve fits which use the Method of Least
h‘ Squares were used in this thesis and are available in the GRAFSTAT
‘.'.':3 graphics package:

60




D . - 3
I’ & v

........

1 linear curve fit;

2. quadratic curve fit;

3 third degree polynomial curve fit, and;

4. Spline fit.
Least Squares Regression with linear fit is a technique of finding the
linear equation which fits a data set and minimizes the sum of squared
residuals. Least Squares Regression with quadratic fit does the same,
but the data is fitted to an second degree polynomial equation, i.e. Y =
AX2 + BX + C, where A, B, and C are the estimated coefficients, X is
the abscissa corresponding to the data being smoothed, and Y is an
estimate of the data being smoothed. Least Squares Regression with
third degree polynomial curve fit is also basically the same as previous
two techniques, but the equation being fitted to the given data has the
form of Y = AX3 + BX2 + CX + D, where A, B, C, and D are the esti-
mated coefficients and X and Y are the same as for the quadratic fit.
For more details about Least Squares Regression with either linear fit,
quadratic fit, or third degree polynomial fit see Spiegel [Ref. 13: pp.
258-305]. All of these techniques use global curve fitting, i.e. the
curve js fitted to the given data as an entity. The Spline fit on the
other hand uses local curve fitting in order to produce the smoothest
possible curve with the sum of squared residuals value less than or
equal to a parameter entered by the user [Ref. 12]. The Spline curve
fitting technique uses the Least Squares Method with third degree poly-
nomial within a predetermined neighborhood of the given data. The
neighborhood size 1is predetermined by the developers of this
GRAFSTAT function. The second derivative of the defined cubic equa-
tion is computed and evaluated using the median of the neighborhood of
point values. The neighborhood is then shifted to the next point and
the procedure is repeated. The sum of squared residuals is computed
and compared to the maximum sum of squared residuals value that the
user requires. If this value exceeds the users constraint then the
entire procedure is repeated. In other words, the Spline curve fitting
technique is a constrained linear programming problem, where the

constraint is the user's maximum sum of squared residuals value
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desired, and the objective function is a cubic equation [Ref. 16: pp.
77-87]. The user of these curve fitting technique should first look at
a scatterplot of the raw data and then decide which one to use.
Therefore, if a scatterplot of a data set looks linear, the user should
attempt to fit a linear curve to the data, otherwise, one of the other

curve fitting techniques should be used.

The Equal-Weight Moving Average smoother was briefly discussed in
Chapter I during the discussion of equations 1.3 and 1.4. The
Equal-Weight Moving Average GRAFSTAT functions that were used to
generate the smooth point values are shown in Appendix C. The
following equation defines the smooth points produced by the
Equal-Weight Moving Average smoother:

s(X K_,)=l§ Ly, ] 1= 12 (N-K), (4.1)
-2 i\ R

where N is the number of points to be smoothed and K is the neighbor-
hood size, i.e. the number of points involved in the averaging. Both
N and K must be positive, non-zero integers, with K being odd. For
an expansion of the Equal-Weight Moving Average smoothing theory, see
Anscombe [Ref. 14: pp. 153-139].

The Cosine Weighted Moving Average smoother is an extension of
the Equal-Weight Moving Average smoother. Instead of wusing the
inverse of K as the weight for each Y value within the neighborhood, a
cosine related weight is computed for each of the Y values within the
neighborhood of size K. (The APL functions used to generate these
values appear in Appendix C.) These cosine weights are a function of
the Y values' location within the shifting window/neighborhood of size
K. The expression defining the smoothed output of the

Cosine-Weighted Moving Average smoother is:

NCAPIED> (WTJXY,,_,_,) 1= 12..,(N-K), (4.2)
2

where
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Anscombe [Ref. 14: p. 450] characterizes this smoother as a "better-
quality approximation" than other Moving Average smoothers, because
"not only does the integrand, but also its first derivative vanish at
both ends of the range of integration" [Ref. 14: pp. 156-157].

The last smoother used as a4 base against which the advanced
smoothers were tested is the Locally Weighted Regression Scatter Plot
Smoother, commonly called LOWESS [Ref. 3: pp. 94-104]. LOWESS uses
the smoothing technique referred to as local regression, i.e. the
Method of Least Squares is used on the input points within a user
given neighborhood. Only one neighborhood size is used by LOWESS
per run of the program. The program requires that the user not enter
the neighborhood size to be used, but a parameter called F, which is a
ratio of the neighborhood size to the number of points to be smoothed.
The user has the option of fitting either a linear or a quadratic func-
tion to the point values within the neighborhood. In addition, the user
has the option of wusing robust or non-robust smoothing. Robust
smoothing has more wvariability than non-robust smoothing, because
outliers are emphasized. Each input point within the neighborhood
receives a weight which is a function of the point's location with
respect to the median of the neighborhood. These weighted point
values are then used .o define a fitted curve within the neighborhood
of input point values. The coefficients of the defined curve and the
median of the neighborhood are used to compute the smoothed point
value corresponding to the median of the neighborhood. The neighbor-
hood size is shifted from one point to the next until each input point

has a corresponding smoothed point value.

Each smoother being used in this thesis requires that a neighbor-
hood be indicated by the user, but each of these smoothers calls the
neighborhood size by a different name as discussed in this section.
The term 'neighborhood size', i.e. the number of point values involved
in the averaging, can be used by any of the smoothers being discussed
in this thesis. The Moving Average smoothers use the variable M to

indicate the neighborhood size. The LOWESS smoother uses the
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variable F, as discussed the above paragraph. Supersmoother uses a
value called SPAN which is equivalent to the F value of LOWESS. The
Split Linear Fit smoother uses the term 'window size' which is equiva-

lent to the M value of the Moving Average smoothers.
C. TESTING AND RESULTS----LINEAR UNDERLYING FUNCTION

The first test posed on the Supersmoother and the Split Linear Fit
algorithms was to detect linear trends in a data set which does have a
linear trend. Figure 4.1 shows Test Set One which consists of 200 data

points produced from the following equation:
Y = X + Normal (0,1) noise, 0<X<200 . (4.3)

The values produced by this function are in tabular form in Appendix
D. Figure 4.2 shows the results from doing a linear regression on Test
Set One. It is obvious that the linear regression curve and the true
linear curve do not coincide. A Confidence Interval Test on the coeffi-
cients produced by the linear regression reveals that the Y-intercept
coefficient, 0.0023573 is not significantly different from zero with a
Confidence Level greater than 0.8. The slope coefficient has a
Confidence Level less than 0.001 that it is not significantly different
from zero. Therefore, the linear regression curve can be reduced to

Y = 1.0104X which has a standard deviation of 0.031 which includes the

true linear relationship, Y = X.

The LOWESS smoothing results are shown in Figure 4.3. Since Test
Set One appears to be linear, the linear option of LOWESS is used.
There is little visible difference between the results produced by using
the robust option and the results produced by using the non-robust
option, i.e. compare the left-hand smooth plots with the right-hand
smooth plots of Figure 4.3. This is not surprising since there are no
outliers in this artificial data. The graphs in Figure 4.3 show that as
the F value is increased, the curve produced gets smoother, i.e. as the
neighborhood size increases the curve gets smoother because the bias

increases and the variance decreases. All F values greater than or
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Figure 4.3 Test Set One: LOWESS Smoothing.
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Therefore, an individual who has little knowledge of the LOWESS
theory should get quick, reasonable results if the F wvalue used is
between 0.33 and 0.66 as suggested by Chambers, etal [Ref. 3: p. 98].
The LOWESS smoothing program may have to be run several times

before a straight line is produced.

In Figure 4.4 are shown the smoothing results produced by the
Supersmoother algorithm. The graphs on the left-hand side display the
curves produced when only one span value is used. The graphs on the
right are the results of using three span wvalues during each run of
Supersmoother. The two top right graphs in Figure 4.4 illustrate the
difference between robust smoothing, i.e. ALPHA= 0.0, and non-robust
smoothing, i.e. ALPHA= 10.0. The single span value curves in Figure
4.4 are quite similar to the smooth curves produced by LOWESS. The
reason for the similarity is that both LOWESS and Supersmoother are
central smoothers, i.e. the smooth point value is the result of aver-

aging over the points in the neighborhood.

When three span values are used the smooth poin‘s generated by
Supersmoother converge much faster to the underlying linear function
than the smooth points generated by LOWESS, Therefore, the
Supersmoother algorithm traces very well the linearity of a data set

*ith linear trends.

When the Split Linear Fit algorithm is used with only one window
size, the resulting curves, shown on the left-hand side of Figure 4.5,
are not much different from the curves produced by LOWESS and
Supersmoother. The right-hand graphs of Figure 4.5 illustrate that
when the Split Linear Fit algorithm is given more than one window size,
the generated smooth point values do not converge to the linear under-
lying function as fast as Supersmoother. The smallest window size,
i.e. 10 and 15, in each case has a great impact on the shape of the
smooth curve, because with few points in the window the outliers
receive higher weights than in 'large' windows. This illustrates that
this smoothing algorithm is designed to place more emphasis on the

outlying data points in the data. Equation 1.4 explains that smaller
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Figure 4.4 Test Set One: Smoothing With Supersmoother.
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window sizes will have less bias and thus show more shape, which is
the case shown in the right-hand plots of Figure 4.5. Therefore, the
user's selection of the smallest window size will determine the degree of

convergence toward the linear underlying function.

Figure 4.6 exhibits smoother, more linear curves than were shown
in Figure 4.5, the reason being that larger window sizes are used, i.e.
increase of bias and decrease of the variance. The bottom graphs of
Figure 4.6 demonstrate the effect of increasing the minimum window
size, MNWNSZ. In Chapter II of this thesis the use of MNWNSZ is
discussed. The author of this thesis, after using the Split Linear Fit
for several months, recommends that the size of MNWNSZ be less than
one-half the size of the smallest window size being used. The bottom
left graph of Figure 4.6 illustrates the distorting effect produced when
this recommendation is not followed. The Split Linear Fit algorithm
does a good job of depicting data with a linear trend, but the user
needs to understand the theory behind the Split Linear Fit, e.g. the
window sizes had to be increased in order to produce a smoother curve,

in order to achieve acceptable results.

Another measure of performance that can be used in verifying the
efficiency of a smoother is the sum of squared residuals. Table 1
shows the sum of squared residuals for the 'best' fitting linear curves
produced by each smoother, where 'best' is supported by a plot of the

smooth curves shown in this chapter.

All the fits listed in Table 1 produce a fairly straight line which is
close to the true underlying function, Y = X. Other fitted curves do
produce lower values of sum of squared residuals but the plotted curve
deviates from a straight line, e.g. the plot produced by Supersmoother
with SPAN(s) = 0.05, 0.3, 0.5 and ALPHA = 0.0 is not very straight,
but the sum of squared residuals is 204.6112056. The decrease in the
sum of squared residuals is due to an increase of bias. Supersmoother
performed almost as well as the Linear Regression and LOWESS, but
three neighborhood sizes had to be used, instead of one. The Split
Linear Fit smoother did not do as well as Supersmoother for the

following reasons:
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Smoothing With Split Linear Fit.
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Figure Test Set One:  Split Linear Fit
Chang'e of Smallest Window Size and MNWNSZ.
1. Neighborhood sizes larger than those used by the other

smoothers had to be used by Split Linear Fit before a smooth

curve could be produced,

than the other smoothers in converging to a known underlying

function.

2. The sum of squared residuals value produced by the best,

Split Linear Fit curve is the largest of all the values,

fore,

.Y---r-r.'

S "‘ - M . B - S f N T .
L=

therefore,

this curve is not as accurate as the other 'best' curves.

this smoother is slower

there-
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TABLE 1

TEST SET ONE:
SUM OF SQUARED RESIDUALS OF THE BEST FITS

Sum of Squared

Type of Fit Residuals

Linear Regression 205.94074

LOWESS, robust, F= 0.5 205.92350

LOWESS, non-robust, F= 0.5 205.82359

Supersmoother, ALPHA= 10.0 205.84026
SPAN(s)= 0.05, 0.3, 0.5

Split Linear Fit, MNWNSZ= 50 206.5657

WNSZ(s)= 160, 170, 180, 190

TABLE 2
TEST SET ONE: COMPUTER CPU CONSUMED

CPU Consumed

Type of Fit (in Seconds)
Linear Regression 1.42
LOWESS, robust, F= 0.5 9.73
LOWESS, non-robust, F= 0.5 3.36
Supersmoother, ALPHA= 10,0 1.55
SPAN(s)= 0.05, 0.3, 0.5 2 28

Split Linear Fit, MNWNSZ= 50
WNSZ(s)= 160, 170, 180, 190

In Table 2 are listed the Central Processing Units, i.e. unit of time
used by the IBM 3033 computer in processing a program, consumed
when the smoothing techniques listed in Table 1 are used. In order to
be consistent in the CPU measurements, each smoother was used to
smooth the same data set and place the smoothed output in an APL
variable. The CPU times listed in the table indicate that the advanced
smoothers do better than most of the other smoothers, but the improve-
ment is only in seconds. Therefore, a user trying to select between
the smoothers should balance this saving in CPU time with the cost of

computer and personnel time, before deriving a conclusion.
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- D. TESTING AND RESULTS----SMOOTH CURVATURE IN UNDERLYING
= FUNCTION

The second test is designed to test how the Supersmoother and the
Split Linear Fit algorithms perform on a data set which has an under-
lying function with smooth curvature, i.e. the change from one point to
the next is not abrupt. Figure 4.7 displays Test Set Two which

consists of 200 data points generated with the following equation:
Y = COS (21_) + Normal (0,1) noise, 0<X<200 . (4.4)
b

The values generated by this function and used in this section are in

tabular form in Appendix D.

- TEST SET TWO WITH N(0.1) NOISE TEST SET TWO WITHOUT N(0.1) NOISE
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Figure 4.7 Test Set Two.

Figure 4.8 shows the curve fitting results of third degree polyno-
mial curve fit to Test Set Two. Confidence Interval Tests on the coef-
ficients of the equation shown on Figure 4.8 reveal that the coefficients
are not significantly different from zero with a Confidence Level of less
than 0.001, thus the coefficients should be accepted.
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Figure 4.8 Test Set Two: Third Degree Polynomial Curve Fit.

Figure 4.9 shows the results of the Spline fit, as previously
discussed this GRAFSTAT function requires that the user enter the
maximum sum of squared residuals value. In Figure 4.9 0 indicates
that the smooth function should have a sum of squared residuals less

than or approximately equal to the second parameter.

Figure 4.10 shows the smooth curves produced from using the
Equal-Weight Moving Average smoother. As usual a larger neighbor-
hood size, M, results in a smoother curve. As stated in Chapter I, the
disadvantage of using the Equal-Weight Moving Average smoother is that
smooth data points are dropped from the ends of the output data set.
This is illustrated in Figure 4.10 where with M=60, 30 points are

dropped from each end.

Figure 4.11 shows the results produced by the Cosine-Weighted
Moving Average smoother. Since this smoother is an extension of the
Equal-Weight Moving Average, it can be seen that as the neighborhood
size, M, is increased smooth point values are also dropped from the
ends of the data set. In addition, this figure illustrates how the

smooth curve converges toward the true underlying function and then
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Figure 4.9 Test Set Two: Spline Fit.
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Figure 4.10 Test Set Two:
Equal-Weight Moving Average Smoothing.

away from this same underlying function, i.e. the variance decreases

but bias increases beyond a certain point.
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. Figure 4.11 , Test Set "'wo: .
Cosine-Weighted Moving Averag« Smoothing.

The LOWESS smooth results are shown in Figure 4.12. Since Test
Set Two appears to be non-linear, the quadratic fitting option of
LOWESS is used. Only the robust cases are shown since the results
are basically the same as the non-robust cases. The best fitting curve

appears to be the smooth curve produced by using F= 0.5.

The Supersmoother results are displayed in Figure 4.13. The
smooth curves produced by using three span values tend to maintain

the shape of the wunderlying function across most span values.
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Figure 4.12 Test Set Two: LOWESS Smoothing.

However, if only one span value is used, the shape of the smooth curve
approaches a straight line as the size of the span value approaches the
value of 1.0. The top right and the middle right graphs illustrate the
difference between wusing robust smoothing, i.e. ALPHA= 0.0, and
non-robust smoothing, i.e. ALPHA= 10.0. Therefore, it is best to use

Supersmoother with three span values and ALPHA=0.0.

Figure 4.14 displays a radical difference betweei using a single
window size and several window sizes as input to the Split Linear Fit

algorithm. As stated in Chapter III, the main purpose of the Split
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Figure 4.13 Test Set Two: Smoothing With Supersmoother.




SPUT UNEAR FIT, WNSZ = 10

SPUT LINEAR FIT, WNSZ(S) =10, 60, 100, 160, 200

« .
' 4
- 4 L . _
0 100 150 200 [ 100 130 200
X X
SPUT UNEAR FIT, WNSZ = 60 SPUT LINEAR FIT, WNSZ(S)= 10, 12, 14, 16
T T 1 ¥ L] T L) v T s 1 L] Ll
MONSZ = §
SOUD UNME: SMOOTH CuRVE
o OJTTED UNE: TRUE CURVE -1

ol .
) -
- " -
A 5 I " i i L " s A o L :
S0 100 150 200 ] 100 130 200
X X

L ¥ T T T T T

n i i " L 4 " i . e & s A
0 100 150 200 0 50 100 150 200
X X

79

N e W
- Pal IR

N L P -

. e D . R
P WU U, TN AP TY UIY Tl SNy Wik TAY Ta Sy 7 o

Figure 4.14 Test Set Two: Smoothing With Split Linear Fit.




SR e~ Bie Y it A MY TRl Pal TR AR e b B sate vt te i da il ee Sl Sadl Al Sad Snd el el Al B el M Bt i e SR T B A R AT S Br B S SR S ﬁ_'r,ﬂ

SPUT UNEAR FIT WNSZ(S)= 25, 50, 100, 150 SPUT LINEAR FIT, WNSZ(S)= 160, 170, 180, 190

— T T T T T T T B T T T T

e - 3
SOUD Ll SMOOTH Culve
~} 20D g IR

A i L I A i ot L 1 L

"
[°] S0 100 150 200 0 S0 100 150 200

X X
SPUT LINEAR FIT, WNSZ(S) 25, 50, 100, 125 SPUT UNEAR FIT, WNSZ(S)= 160, 170, 180, 190
L 1 T T L) T T Ll T T ¥ T L) T T
[ acd

Figure 4.15 Test Set Two: Split Linear Fit
Change of MNWNS?.

Linear Fit smoother is to disclose sudden abrupt changes in a data set.
By using a single window size, the algorithm does not produce enough
information about the true shape of the given data set, and the result
is the deviating smooth curves on the left side of Figure 4.14. The
use of several window sizes produces more information about the raw
data, and the result is smoother curves; see the graphs on the right of
Figure 4.14. Figure 4.15 shows the effect produced when the size of :
MNWNSZ is changed and when large window are used. The smoothed
output produced by the Split Linear Fit smoother never converges to )

the true underlying function no matter what window sizes are used.
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The sum of squared residuals corresponding to the 'best' fitting
curves are listed in Table 3. Each of the fits listed in Table 3 has a
different degree of convergence toward the true underlying function,

Y = COS(X/25). Other fits not listed in Table 3 but discussed in this
section produced smaller sum of squared residuals, however the smooth
curve did not resemble the true underlying function to a high degree.
Supersmoother performs fairly well when given a set of data with a
smooth curvature. The Split Linear Fit smoother did a poor tracing the

true underlying curve very well, when compared to other more simple

smoothers.
‘ TABLE 3
- TEST SET TWO:
SUM OF SQUARED RESIDUALS OF THE BEST FITS
< Sum_of Squared
Type of Fit Residuals
Third Degree Pol:?/nomlal Curve Fit 219.14846
Spline Fi 203.70213
Equal- Welght \1ovmg Average, M= 6 159.04903
Cosine-Weighted Movmg Average, M— 61 158.38194
LOWESS, xobust 0.5 207.2
LOWESS, non- robust F= o 5 207.1o3
Superamoothe ALPH 0.0 209.28674
SPAN(s) "5.05 0.5
Split Linear “Fit \'wa\ISZ 5 209.51462
WNSZ(s)= 25, 50, 100, 150
2 Table 4 shows the CPU times consumed by the smoothers listed in

Table 3. The Cosine-Weighted Moving Average smoother, in addition to

producing . very goou sum of squared residuals value, is very fast in

generating the smoothed results. The advanced smoothers were much

slower than the Cosine-Weighted Moving Average, but were faster than
N LOWESS.
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TABLE 4
TEST SET TWO: COMPUTER CPU CONSUMED

CPU Consumed
Type of Fit (in Seconds)

Third Degree Polynomial Curve Fit
Spline Fit (0, 203)
Equal-Weight Moving Average, M= 60
Cosine-Weighted Moving Average, M= 61
LOWESS, robust, F= 0.5
LOWESS, non-robust, F= 0.5
Supersmoother, ALPHA= 10,0

SPAN(s)= 0.05, 0.3, 0.5
Split Linear Fit, MNWNSZ= 50

WNSZ(s)= 160, 170, 180, 190

—

(%) 5

N ==1=O0OMNO
%)
[\

E. TESTING AND RESULTS----ABRUPT CHANGES IN CURVATURE IN
UNDERLYING FUNCTION
The third test examines the performance of the Supersmoother and
the Split Linear Fit algorithms on a data set which includes a triangular
function. Test Set Three is shown in Figure 4.16 .and the point values
are displayed in table form in Appendix D. The following equation was

used to generate Test Set Three:

1.0 - 0.06X . if 0<X<50
8.0 - 0.08X _if 30<X<100

Y = 3_0.808 + 0.008X , if 100<X<150 (4.5)
0.292 ,if 150<X<200 .

In order to check the data set against equation 4.5 a linear regres-
sion was done on each part of the above equation and the results are
displayed in Figure 4.17. This figure shows that the regression equa-
tions deviate from the true equations. A Confidence Interval test done
on each of the coefficients indicates that the coefficients are signifi-
cantly different from zero, therefore, the equations produced by the

regression are accepted.
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The curve resulting from third degree polynomial fit on Test Set
Three is shown in Figure 4.18. A Confidence Interval test done on the
coefficients reveals that the coefficients produced by this fitting tech-
nique are not significantly different from zero with a Confidence Level

less than 0.001. Thus all the coefficients in the equation shown in
Figure 4.18 are accepted.

TEST SET THREE WITH N(0.1) NQISE TEST SET THREE WITHOUT N(0.1) NOISE

T T T T ] @

—— T T T Y T

i A L " . i i L
-t 0 30 100 150 200 0 30 100 130 200

Figure 4.16 Test Set Three.

A plot of the point values generated by a Spline Fit with the sum of

e squared residuals required to be no greater than 204 is shown in
.::‘.}-f Figure 4.19.

The smooth point values generated on two runs of the Equal-Weight

Moving Average are plotted, and the curves are displayed in Figure
4.20,

The curves produced by plotting the smooth point values generated

by the Cosine-Weighted Moving Average smoother are displayed in
Figure 4.21.
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\ The LOWESS smoothing results are displayed in Figure 4.22. The
o best fit is produced by the run with F= 0.3. The smooth curve almost
-—,- coincides with the true underiying function.
Figure 4.23 contains the plots of the smooth points produced by
i Supersmoother. As can be seen, the best fit is when three span values
> are used in the smoothing, i.e. SPAN(s)= 0.05, 0.3, 0.5, which happen
:-:: to be starting values recommended by the Friedman and Stuetzle
;::: [Ref. 9: p. 9]. The smooth curve tends to depict the true underlying
-I:: function very well. The top right graph and the middle right graph
B
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Figure 4.18 Test Set Three:
Third Degree Polynomial Curve Fit.
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Figure 4.19 Test Set Three: Spline Fit.

]

show the great disparity between using non-robust smoothing, i.e.
ALPHA= 10.0, and robust smoothing, i.e ALPHA= 0.0. Thus with the
Supersmoother three span wvalues with a ALPHA=0.0 are necessary to

get useful results.
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Figure 4.20 Test Set Three: .

. Equal-Weight Moving Average Smoothing.

2% By examining the plots in Figure 4.24 and 4.25, it is obvious that
Y the Split Linear Fit smoother produces results which are often too

erratic and not useful. Outlying points have too much influence on the

- output produced by this smoother. The only plot without any drastic
’\: deviations from the curvature of the underlying function is the top left
;::_ plot in Figure 4.25.

- Table 5 shows for the third time that in addition to not producing
Z{i good smooth curves which depict the underlying function very well, the
-:‘_'.; advanced smoothers do r»t produce sum of squared residuals values as
’ good as the baseline smoothers.

- Table 6 shows that the advanced are consistently using the same low
':j:_: amount of CPU time. The LOWESS has fluctuated in CPU usage, but
- has always used the most CPU. The Cosine-Weighted Moving Average
N smoother for the second time has generated a very good sum of squared
f‘- residuals value and has used the least amount of CPU.
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Figure 4.21 Test Set Three:
Cosine-Weighted Moving Average.

F. CONCLUSIONS

The advanced smoothers, Supersmoother and Split Linear Fit, are
quite complex to thoroughly understand and require that the user enter
many parameters. The interrelationship between the parameters is not
clear, and the results are difficult to control. For example, the
smallest neighborhood size used by the advanced smoothers has more
influence on the output than the other neighborhood sizes, but this

value can not be too big or the output will get distorted. In addition,
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Figure 4.22 Test Set Three: LOWESS Smoothing.

to the three or more neighborhood sizes that the user must think about
and calculate, a fourth value must be considered, i.e. the
Supersmoother's ALPHA value and the Split Linear Fit's MNWNSZ value.
Changing anyone of these values in the advanced smoothers produces
radical changes in the shape of the fitted curve, leaving the user
confused as to which values to change and by how much. Friedman
and Stuetzle recommend that the neighborhood sizes be between 5 and
50 percent of N, where N is the number of points to be smoothed. They

also claim that "savings are substantial" [Ref. 9: p. 5], i.e. in the
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Smoothing With Split Linear Fit.
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Figure 4.25 Test Set Three: Split Linear Fit,

Change of MNWNSZ

time required to find a desired smoothed curve is greatly reduced.

The SPAN values used in this thesis meet this criteria. The program
runs fast, but the sum of squared residuals values produced are not as
good as the values produced by the simpler, more user friendly

smoothers, one of which uses far less CPU.

McDonald and Owen never really give any guidance on the number
of window sizes to use except that they used "several (typically three

to five)" [Ref. 10: p. 2] in their testing of the Split Linear Fit
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T
SUM OF SQUARED RESIDUALS OF THE BEST FITS

Type of Fit Residuals
Third Degree Polilnomlal Curve Fit 270.05338
Spline Fi 204.66025
Equal- Wexght Movmg Average, M= 60 173.46090
Cosine-Weighted Moving Average, M= 61 156.80284
LOWESS, robust 204.173
o LOWESS’ non-robust F- 0.3 210.571
Supersmoothe ALP 0.0 204.70795
N SPAN(s) '5.05 o 0.5
o Split Lmear Fit, MNWNSZS B 206.59216
WNSZ(s)= 25, 50, 100, 150

TABLE 5
EST SET THREE:

Sum_of Squared

Cosine- We1 hted Moving
LOWESS, robust F= 0.5

Supersmoother ALPHA
SPAN(s)= "5.05

WNSZ(s)= 160, 170,

- TABLE 6
- TEST SET THREE: COMPUTER CPU CONSUMED
CPU Consumed
Type of Fit (in Seconds)
Third Detgree Polzynomlal Curve Fit 98
Spline Fi 12.95
Equal-Weight \/Iovmg Average, M= 60 .07

LOWESS, non-robust, F= 0

Spht Linear Fit NfNWNSZ 50

Average M= 61

15.19

.02

10 O 33
.5

N OO ONO
[N
3%}

180, 190

the desired smooth curve.

next. Results may be obtai

......
............

smoother. The smooth curves produced by this smoother never are

consistent, i.e. follow a pattern which can be used as a guide toward

problem. The smooth curve is totally different from one graph to the

Figure 4.24 is a good example of this

ned fast, but a user wants good results.
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In conclusion, even though the advanced smoothers are fast, they
do not perform as well as the LOWESS smoother or the faster
Cosine-Weighted Moving Average smoother in depicting simple functional
relationships. The consistently good sum of squared residuals values
and smooth curves produced by these simple smoothers favor their use

over the advanced smoothers.
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A. GENERAL

The evaluation of Supersmoother and Split Linear Fit continues in
this chapter. As stated in the previous chapter, a smoothing algorithm
is used to extract the underlying relationship from a data set.
Smoothing is especially useful if the underlying relationship is complex,
i.e. too difficult to describe mathematically or use simple (global) least
squares regression. The small and simple data sets in the previous
chapter are easy to smooth since the shape of the underlying function
is quite visible in a scatterplot of the raw data, see Figures 4.1, 4.7,
and 4.16. Least squares regression is thus easy to apply to these data
sets. On the other hand, the least squares method does not adequately
smooth the data set tabulated in table form in Appendix D. A plot of
this data is shown in Figure 1.1. The great amount of wvariability
inherent in the data set causes the regression technique to be inade-
quate, i.e. the raw data is very erratic. Most data sets collected from

real populations/situations do not have a constant nor smooth variance,

thus regression techniques fail to be adequate, 1i.e. the fitted curve

is too smooth and the sum of squared residuals is too high.

In this chapter the data set utilized is the daily sea-surface temper-
atures at Granite Canyon, just south of Point Sur, California [Ref. 10].
The data displayed in Figure 1.1 is the first of thirteen years of sea-
surface temperature data collected at this location. This data set defi-
nitely does not have a constant variance, but it seenns to exhibit some
periodicity and to have some points of discontinuity, notably a wvery
sudden and strong drop in temperature because of current up wellings
in the spring. This data set was selected for final evaluation of
Supersmoother and Split Linear Sit because of the following reasons:

1. this data set has been a sukject of intense data analysis
[Ref. 4],
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2. the characteristics exhibited by this data set, mentioned above,

and;
3. it was easily accessible.
N B. METHODOLOGY
; The procedure followed in this chapter in the evaluation of

Supersmoother and Split Linear Fit is described in the previous chapter
in the Methodology section. The procedure is outlined below:

1. display and examine the data set to be smoothed;

2. display and examine the smooth results produced by the base-
line smoothing techniques, i.e. the Least Squares Regression,
the Equal-Weight Moving Average, the Cosine-Weighted Moving
Average, and LOWESS;

3. display and examine the smooth results produced by the
advanced smoothers;

4. compare these results to the results from 2 above.

In the previous chapter the graphs showing the smooth points produced
: by any one smoothing technique were displayed together, e.g. see
Figure 4.3 which has all the Test Set One LOWESS smoothing results.
In this chapter it is best to display together the smoothing results that

- | use equivalent neighborhood sizes, as described below:
.-f 1. the neighborhood size in the Moving Average smoothing tech-
nique is called M, which is equivalent to window size used in

Split Linear Fit;

2. the span value used by Supersmoother is equivalent to the F
value used by LOWESS, both are computed as the ratio of the

neighborhood size to the number of data points to be smoothed.

X This change in plot display makes it easier to subjectively decide
the adequacy or usefulness of the advanced smoothing algorithms. The
word 'subjectively' is used as the measure of effectiveness because, as
mentioned before, the decision to use one smooth curve over another is
basically based on the user's needs and desires and on the curve's
appearance. In order to bare the comparison a more concrete statistical

analysis, the sum of squared residuals of the different plots will be

calculated.
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The complete sea-surface temperature data set contains 4380 data
points, i.e. a sea-surface temperature corresponding to each day for
the period of March 1, 1971 to February 1983, excluding the dates of
February 29. Only the first 671 data points which correspond to 1971
and 1972 will be used in the evaluation in this chapter so as to have a

manageable input data set.

Figure 5.1 shows a scatterplot of the data set used in this chapter.
The axis scales shown in this figure will be the standard axis scales to
be used in all the graphs corresponding to this chapter. The vertical
axis which is easiest to describe displays the sea-surface temperature
range in degrees centigrade. The horizontal axis displays the day that
the temperature was measured. The numbers shown indicate the
Calendar date, i.e. the first digit indicates the year, assuming that the
corresponding decade is known. Recall that the abbreviated data set
used in this chapter was collected in the 1970's. The next three digits
indicate the day of the year, for example '080' means the goth day of
the year. The {rertical dashed grid lines indicate the change in season
during the year, e.g. at 1080 winter 1971 ends and spring 1971 begins.
The solid tic marks indicate the end of a month. Al the graphs begin
with January. This is the reason that in Figure 5.1 the first two bins,
January and February, are empty since the data set begins with March
1, 1971. Finally, since the abscissa are measured in days, the neigh-
borhood sizes used in this chapter will also be in days, e.g. a neigh-

borhood size of 5 will correspond to a period of 5 days.
C. TESTING AND RESULTS

Figure 5.1 exhibits the data set that is evaluated in this chapter.
From this graph alone, it could be deduced that there are two tempera-
ture cycles present in the data set. The first cycle peaks near the
end of summer 1971, and second cycle peaks just after the beginning of
fall 1972. Another point of view that the analyst may take by looking

at Figure 5.1 is to analyze the point distribution between the

peaks,e.g. the data points from beginning of fall 1971 to beginning of
fall 1972. Within this period the temperature appears to follow a cyclic
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process, but with a smaller period, e.g. from 1355 to 2080 the temper-
ature increased and then decreased and from 2080 to 2172 the opposite
is reflected. Therefore, one analyst may try to depict the intra-annual
cycle, while another may try to display the inter-annual cycle, while
still another may try to show both cycles or something else. The anal-
ysis in fhis chapter will concentrate on the intra-annual cycle as
depicted by the advanced smoothers and compare these results to
curves produced by previously validated and well-accepted smoothing
techniques.

OAILY SEA SURFACE TEMPERATURE AT GRANITE CANYON
MARCH 1, 1971 TO DECEMBER 31, 1972
i T ;

1
T
A 4

areesalidn

14

12

TEMPERATURE W DEGREE CENT.
[

10

PR 3 N
P . i
© . ' .

.:1‘ILAI:AJL:III:lll‘:l_llilllzll
1080 1172 1264 1333 2080 2172 2284 2333
JUUAN CALENDAR .DATE

Figure 5.1 Data Set For Practical Application.

Figure 5.2 shows the data divided into the two annual periods in
order to display the intra-annual characteristics of the data. With
these displays the intra-annual variability is more detectable and a
different view of smoothing the data can be ta_ken, i.e. the data can be
smoothed to show the cyclic effect within the seasons, for example
between 1172 and 1264.
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Figure 5.2 _ Data Set For Practical Application-
Divided Into Two Parts.

Figures 5.3 through 5.8 show the smooth curves produced by the
smoothers being compared in this chapter. A different neighborhood
size was used to smooth the data in each case. One of the three span
values used in the Supersmoother corresponds to the neighborhood size
that is used by the other smoothers within a figure; the same applies to
the Split Linear Fit. In order to properly evaluate the adequacy of the
smoothing produced by the advanced smoothers, it is best to compare
similar smooth curves produced by both the advanced smoothers and the

baseline smoothers.

As the neighborhood size increases, the produced smooth curve gets
smoother. This effect is described by the analytical equation 1.4. In
addition, as the neighborhood size increases, the Moving Average type
smoothers loose more smooth data points from each end; this effect was

described in Chapter I.
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After each figure is a table which compares the sum of squared
residuals corresponding to the curves displayed in the figure. This
gives the analyst a better and more statistically supported comparison
between the smooth output produced by the different smoothers. In
addition, a table showing the CPU time used by each of the smoothers

follows the sum of squared residuals table.

Figure 5.3 presents the smooth curves which are produced when the
neighborhood size is small,i.e. neighborhood size of 5. The curves are
very erratic and somewhat unpleasant to the eye. Because some of the
peaks are too close to each other, the short term cyclic effect is over-
emphasized and rendered useless. In Table 7 it can be seen that the
sum of squared residuals that correspond to the advanced smoothers are
not as low as those corresponding to the simple smoothers. In fact the
sum of squared residuals corresponding to the Supersmoother is almost
three times that produced by LOWESS, which is the lowest value.
Table 8 shows that the Cosine-Weighted Moving Average smoother is
about three time.s faster than Supersmoother and about 5 times faster

than Split Linear Fit, yet more accurate.

In Figure 5.4 the smooth plots are not as jagged as the ones shown
in Figure 5.3. The reason for this difference is that the neighborhood
size used to produce the smooth curves in Figure 5.4 is twice that of
those used to produce the smooth curves in Figure 5.3. There are
some slight differences between each smooth curve in Figure 5.4, but
the differences are difficult to detect. The curve produced by
Supersmoother seems to have the least amount of jagged peaks thus
making it easier to count the increasing and decreasing cycles within
each season. However, Table 9 shows that the sum of squared resi-
duals produced by Supersmoother is not as good as those produced by
the LOWESS, either robust or non-robust smooth curve. The analyst in
this case has the choice of deciding whether to have a good smooth
curve with a high sum of squared residuals or a not so smooth curve
with a low sum of squared residuals. Table 10 shows that the

Cosine-Weighted Moving Average smoother is much faster than either of
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TABLE 7

SUM OF SQUARED RESIDUALS EWNG NEIGHBORHOOD SIZE OF

Type of Fit
Spline (0, 100)
Equal-Weight Moving Average, M= 5
Cosine-Weighted Moving Average, M= 5
LOWESS, robust, F= 0.00745
LOWESS, non-robust, F= 0.00745

Supersmoother, ALPHA= 0.0
SPAN(s)= 0.00745, 0.016393, 0.0175

Split Linear Fit, MNWNSZ= 2
WNSZ(s)= 5, 11, 13

Sum of Squared
Residuals

100.47089
84.9068
48.0688
49.1153
37.3108

105.7947

60.5805

TABLE 8

CPU USAGE: NEIGHBORHOOD SIZE OF 5

Type of Fit
Spline (0,100)
Equal-Weight Moving Average, M= 5
Cosine-Weighted Moving Average, M= 5
LOWESS, robust, F= 0.00745
LOWESS, non-robust, F= 0.00745

Supersmoother, ALPHA= 0.0
SPAN(s)= 0.00745, 0.016393, 0.0175

Split Linear Fit, MNWNSZ= 2
WNSZ(s)= 5, 11, 13

CPU Consumed
(in Seconds)

26.6
0.03
0.69

16.07
5.41
2.27

3.79
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TABLE 9
SUM OF SQUARED RESIDUALS I%SING NEIGHBORHOOD SIZE OF

Sum_of Squared

Type of Fit ' Residuals
Spline (0, 200) 200.51872
Equal-Weight Moving Average, M= 13 236.86018
Cosine-Weighted Moving Average, M= 13 134,92327
LOWESS, robust, F= 0.0175 86.4623
LOWESS, non-robust, F= 0.0175 74.3993
Supersmoother, ALPHA= 0.0 233.94982

SPAN(s)= 0.016393, 0.0175, 0.031296

Split Linear Fit, MNWNSZ= 2 186.25445

WNSZ(s)= 11, 13, 21

TABLE 10
CPU USAGE: NEIGHBORHOOD SIZE OF 13

CPU Consumed

Type of Fit (in Seconds)
Spline (0, 200) 38.0
Equal-Weight Moving Average, M= 13 0.04
Cosine-Weighted Moving Average, M= 13 0.73
LOWESS, robust, F= 0.0175 12.02
LOWESS, non-robust, F= 0.0175 3.95
Supersmoother, ALPHA= 0.0 2.32
SPAN(s)= 0.016393, 0.0175, 0.031296
Split Linear Fit, MNWNSZ= 2 3.77

WNSZ(s)= 11, 13, 21
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the advanced smoothers in addition to being the most accurate

smoother.

With a neighborhood size of little less than a month, i.e. 21 which
is equivalent to 21 days since time is the unit of measurement of the
abscissa in this data set, most of the smoothers produce smooth curves
which have lost the jagged effect at the high and low points of the
smooth curves, see Figure 5.5. In this figure, the smooth curve
produced by Split Linear Fit displays its tendency to follow and empha-
size outliers. Split Linear Fit results are so robust that the peaks are
shown pointed and not round as displayed by the other smoothers.
This effect is caused by the edge-detection weighting scheme of Split
Linear Fit. As shown in Table 11, the sum of squared residuals
produced by the advanced smoothers are higher than most of the other
smoothers, even though a very similar smooth curve is produced by all
the smoothers. The difference between the sum of squared residuals
value corresponding to Split Linear Fit and Supersmoother, respec-
tively, can be e‘xplained by the tendency of Split Linear Fit to follow
outliers more closely than Supersmoother. The Split Linear Fit
smoother lets the raw data dictate the shape of the smooth curve,
therefore, the difference between the raw data and the smoothed data is
smaller for the Split Linear Fit than for the Supersmoother. Table 12
shows again that the Cosine-Weighted Moving Average smoother is
faster, even though the sum of squared residuals value may not be the
best. The Supersmoother and the Split Linear Fit smoothers have

consistently maintained their usage of CPU.

Figure 5.6 displays the results produced by using a neighborhood
size equivalent to almost one month, i.e. 29 days. Though still quite
similar, each smoother produces a visibly different smooth curve. The
only exception is Equal-Weight Moving Average smoother which has
suppressed the influence of the outliers. The shape of the input data
is still being maintained by most of the smoothers, especially Split
Linear Fit which is designed to do so. In Table 13, the sum of

squared residuals values corresponding to the advanced smoothers do
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TABLE 11

Type of Fit
Spline (0,225)
Equal-Weight Moving Average, M= 21
Cosine-Weighted Moving Average, M= 21
LOWESS, robust, F= 0.031296
LOWESS, non-robust, F= 0.031296

Supersmoother, ALPHA= 0.0
SPAN(s)= 0.0175, 0.031296, 0.04322

Split Linear Fit, MNWNSZ= 2
WNSZ(s)= 13, 21, 29

SUM OF SQUARED RESIDUALS 2[{SING NEIGHBORHOOD SIZE OF

Sum_of Squared
Residuals

225.04812
331.967483
209.75158
162.382
142.891
270.39113

236.34410

TABLE 12

Type of Fit
Spline (0, 225)
Equal-Weight Moving Average, M= 21

LOWESS, robust, F= 0.031296
LOWESS, non-robust, F= 0.031296

= Supersmoother, ALPHA= 0.0
SPAN(s)= 0.0175, 0.031296, 0.04322

Split Linear Fit, MNWNSZ= 2
WNSZ(s)= 13, 21, 29

Cosine-Weighted Moving Average, M= 21

CPU USAGE: NEIGHBORHOOD SIZE OF 21

CPU Consumed
(in Seconds)

43.87
0.07
0.76
29.56
10.03
2.25

3.7
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r \'v‘* TABLE 13
s SUM OF SQUARED RESIDUALS zgSING NEIGHBORHOOD SIZE OF
‘- -
-2
2T . Sum_of Squared
L~ Type of Fit Residuals
‘- Spline (0, 250) 249.84103
> Equal-Weight Moving Average, M= 29 411.15847
3 Cosine-Weighted Moving Average, M= 29 266.83401
LOWESS, robust, F= 0.04322 235.881
LOWESS, non-robust, F= 0.04322 202.825
N Supersmoother, ALPHA= 0.0 265.40284
3*: SPAN(s)= 0.0175, 0.04322, 0.09091
o Split Linear Fit, MNWNSZ= 2 211.79171
T WNSZ(s)= 13, 29, 61
5‘
-
TABLE 14
CPU USAGE: NEIGHBORHOOD SIZE OF 29
CPU Consumed
: Type of Fit (in Seconds)
‘fé Spline (0,250) 42.55
iJl Equal-Weight Moving Average, M= 29 0.08
R Cosine-Weighted Moving Average, M= 29 0.81
LOWESS, robust, F= 0.04322 34.21
&5 LOWESS, non-robust, F= 0.04322 11.28
- Supersmoother, ALPHA= 0.0 2.28
! SPAN(s)= 0.0175, 0.04322, 0.09091
0 Split Linear Fit, MNWNSZ= 2 3.78
- WNSZ(s)= 13, 29, 61
A
‘.
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not deviate as much as in the three past cases from the sum of squared
residuals values corresponding to the other smoothers. Table 14 basi-

cally follows the same explanation of Table 12.

If a neighborhood of two months is used, the smooth curves shown
in Figure 5.7 are produced. Each curve is now quite different from
the other curves. It is now quite noticeable that the Moving Average
type smoothers have lost smooth data points at the ends. LOWESS has
been able to maintain the shape of the input data. The Split Linear Fit
has made a good attempt to do as well with the edge-detecting
weighting scheme. Since Supersmoother is a central smoother and the
neighborhood size is larger than the intra-seasonal period, the smooth
curve produced is quite 'smooth', i.e. not jagged and abrupt. The sum
of squared residuals values shown in Table 15 reflect the superiority of
LOWESS over the other smoothers. The smooth curves displayed in
Figure 5.7 substantiate even more LOWESS's superior performance.
LOWESS has a better sum of squared residuals value and a better
smooth curve. Table 16 shows that LOWESS is almost the slowest of the

smoothing techniques, but it has the lowest sum of squared residuals.

The last figure, Figure 5.8, is shown basically to illustrate that the
Moving Average smoothers have begun to deteriorate, i.e. loose too
many smooth data points at the ends and deviate from the shape of the
raw data. LOWESS and the advanced smoothers are still maintaining the
general shape of the raw data, but are beginning to get too smooth.
The Split Linear Fit smoother has made a good attempt to depict the
outliers, even with a large neighborhood size, but the price paid is the
return of the undesirable sharp peaks with plateau-like bases. If the
neighborhood size is gradually increased, the resulting smooth curves
will change from those in Figure 5.8 to smooth sinusoidal curves, and
eventually to straight lines. The sinusoidal curves and the straight
lines illustrate only general features about the raw data and defeat the
purpose of smoothing. "As shown in Table 17, where the neighborhood
size is 91 days, the advanced smoothers finally produced the low sum of

squared residuals values. This figure was made to illustrate that the
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TABLE 15
SUM OF SQUARED RESIDUALS 6[{SING NEIGHBORHOOD SIZE OF

Sum of Squared

Type of Fit Residuals
Spline (0, 300) 299.19197
Equal-Weight Moving Average, M= 61 517.92528
Cosine-Weighted Moving Average, M= 61 409.40077
LOWESS, robust, F= 0.09091 372.995
LOWESS, non-robust, F= 0.09091 372.263
Supersmoother, ALPHA= 0.0 453.02390

SPAN(s)= 0.04322, 0.09091, 0.13562

Split Linear Fit, MNWNSZ= 2 423.35262

WNSZ(s)= 29, 61, 91

TABLE 16
CPU USAGE: NEIGHBORHOOD SIZE OF 61

CPU Consumed

Type of Fit (in Seconds)
Spline (0,300) 46.17
Equal-Weight Moving Average, M= 61 0.14
Cosine-Weighted Moving Average, M= 61 0.98
LOWESS, robust, F= 0.09091 51.78
LOWESS, non-robust, F= 0.09091 17.44
Supersmoother, ALPHA= 0.0 2.28
SPAN(s)= 0.04322, 0.09091, 0.13562
Split Linear Fit, MNWNSZ= 2 3.8

WNSZ(s)= 29, 61, 91
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advanced smoothers maintain the shape of the raw data better than the

other smoothers when larger neighborhood sizes are used in the
smoothing. Table 18 illustrates that the advanced smoothers maintain a
constant CPU usage, throughout the evaluation. Tables 8 through 18
have larger CPU usage than in the previous chapter. The reason for

this is that the data sizes are different.
D. CONCLUSIONS

The two advanced smoothers investigated in this thesis, the
Supersmoother and the Split Linear Fit, generate adequate smooth
curves. They are faster than most current smoothing techniques.

However, their many inputs make their implementation difficult.

Two simpler smoothers are the LOWESS and the Cosine-Weighted
Moving Average. Both only require a single neighborhood size as
input. This dramatically reduces the complexity of the program for the
user. Both generate smooth curves with satisfactory results equal to
the advanced smoothers. However, both LOWESS and the

Cosine-Weighted Moving Average produce better sum of squared resi-

duals values. In addition, the Cosine-Weighted Moving Average is much

N faster than either of the advanced smoothers.

The simpler smoothers, LOWESS and the Cosine-Weighted Moving
- Average, do have some drawbacks. LOWESS is considerably slow than
" the advanced smoothers, but the disadvantage of LOWESS is only
apparent after many runs of the programs. The speed difference for a
single run is minor, measured only in seconds. The disadvantage of
the Cosine-Weighted Moving Average smoother is that wvalues are

dropped from the ends of the output array, as illustrated in this

S thesis. The larger the neighborhood size, the more smoothed values
f.:'{ are dropped, sometimes these values are important and other times they
o

o are not; this decision belongs to the user.

5: It is the recommendation of the author that LOWESS or the

Cosin-Weighted Moving Average smoother be used over either of the

advanced smoothers. The advanced smoothers are considerably more
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TABLE 17
SUM OF SQUARED RESIDUALS USING NEIGHBORHOOD SIZE OF

Sum of Squared

Type of Fit Residuals
Spline (0,450) 450.54580
Equal-Weight Moving Average, M= 91 550.83383
Cosine-Weighted Moving Average, M= 91 463.34429
LOWESS, robust, F= 0.13562 458.317
LOWESS, non-robust, F= 0.13562 454.213
Supersmoother ALPHA= 0.0 435.71549

PAN(s)= 0.04322, 0.13562, 0.2489
Split L1near Fit, MNWNSZ= 2 452.55936
WNSZ(s)= 29, 91, 167

s
»‘_;:;
h TABLE 18
.:I:f CPU: USAGE NEIGHBORHOOD SIZE OF 91
g
s
[ CPU Consumed
Type of Fit (in Seconds)
Spline (0,450) 55.27
:ﬁ': Equal-Weight Moving Average, M= 91 0.2
j:f: Cosine-Weighted Moving Average, M= 91 1.1
4 LOWESS, robust, F= 0.13562 68.04
LOWESS, non-robust, F= 0.13562 23.01
Supersmoother ALPHA= 0.0 2.27
SPAN(s)= 0.04322, 0.13562, 0.2489
Split Lmear Fit, W\IWNSZ 2 3.82
WNSZ(s)= 29, 167
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VI. INSTRUCTIONS ON USING THE ADVANCED SMOOTHERS

A. GENERAL

This chapter provides detailed instructions on how to use the
smoothing programs developed by the author of this thesis and have the . !
advanced smoothing algorithms embedded in them. The Supersmoother |
algorithm is embedded in one smoothing program and the Split Linear
Fit algorithm is embedded in another smoothing program. Any inter-
ested person should be familiar with this chapter before attempting to
do any data smoothing with these programs. In order to obtain good
and fast results and understand the smoothing algorithms, it is highly
recommended that the user read either or both of Chapters II and III,
depending on the program to be used. Before adjusting any embedded
parameters, it is essential that the user read the 'Technical Description'
chapter corresponding to the program being modified. These programs
are designed to be used on the IBM 3033 computer currently at the
Naval Postgraduate School. The programs are written in FORTRAN 77,
because of the need to use negative index values. The use of both of
the smoothing programs is very similar, so both are addressed in this
chapter. Operations peculiar to each program are addressed as sepa-

rate paragraphs corresponding to each program.

The smoothing programs are completely interactive, in other words,
the user enters the data and other pre-defined parameters when asked
by built-in queries. The user has the option of selecting the one of
several types of output, which are:

1. create a CMS file and place the smooth output into this newly
created CMS file;

place the smooth output into an existing APL workspace within
a newly created APL variable;

create an APL workspace and place the smooth output into this
newly created workspace, or;

plot the smooth output using the GRFASTAT graphics package.

116
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The smoothing programs are quite flexible in letting the user decide

where to put the final smooth output. The user can smooth any
number of points up to 5000 data points., The data to be smoothed
need not be in order, because the smoothing programs have an
embedded sorting subroutine which sorts the data into chronological
according to the abscissa values entered by the user, before sending

the data array to the advanced smoothing algorithms.

The programs are written in such a way that if the user makes a
mistake, it will be announced, and the program can be restarted or
stopped. Practically no knowledge of FORTRAN is needed to run these
programs. If APL is to be used, it is best to understand what the
relevant 'workspace' and ‘'variable' names are [Ref. 15]. If the user
wants to use GRAFSTAT to plot the output, it is best to get familiar
with the GRAFSTAT 'PLOT' and 'AXIS CONTROL' functions before
attempting to use the plotting option embeded within the advanced

smoothing programs.
B. TERMINAL REQUIREMENTS

If used to create a CMS data file the Supersmoothing program is
used to can be run from any remote terminal attached to the IBM 3033
and located within the Naval Postgraduate School. If this smoothing
program is to be used for APL workspace creation, then an appropriate
APL terminal must be used. If the GRAFSTAT plotting option is to be
used, then the IBM 3277/TEK 618 graphics terminals must be used.

Because the Split Linear Fit generates a great amount of data it
must be run on the IBM 3277/TEK 618 graphics terminals with a memory
capacity of at least 2 Mega-Bytes. The bigger the input data set, the
more data storage that the Split Linear Fit smoothing program will need.
For each point that is to be smoothed, the computer needs the capacity
to store a matrix that has the dimensions of 9 by the number window
sizes entered. For example, if 200 data points are to be smoothed with
the Split Linear Fit smoothing program and 6 window sizes are entered,

then each data point will need a matrix of size 9 by 6. Therefore, to
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run this smoothing program, the user must have available the storage
capacity for a matrix that is 200 by 9 by 6, i.e. 10,800 bytes, plus the
storage capacity for the raw data, the corresponding abscissa and
computed weights, the temporary smoothed point values, and the final

smoothed point values.

3

d

K -

h C. INPUT DATA FILES

-_ In order to use either of the smoothing programs, it is required
::::'l; that the data which is to be smoothed be in a CMS file with filetype
. 'data'. If the data points are not in chronological order, the corre-

. sponding abscissa, i.e. numerical order, must be in another CMS file
[ with filetype 'ORD'.
2 .

D. PROGRAM INITIALIZATION

The advanced smoothing program packages can be obtained from

:Zfi.‘ Professor P. A. W. Lewis, Department of Operations Research, U. S.

Naval Postgraduate School, Monterey, CA. The Supersmoothing

program consists of the following files:

1. SUPSMO EXEC A1,

2. SUPSMO FORTRAN Al;

3. SUPSMO VSAPLWS Al.
A copy of these files is in Appendix A. The Split Linear Fit program
consists of the following files:

1. SPTLIN EXEC Al;

2. SPTLIN FORTRAN Al;

3. SPTLIN VSAPLWS Al.
A copy of each of these files is in Appendix B. It is essential that the
three respective files be on the same disk when either smoothing
program is to used. The EXEC file do the following operations:

1. activates the IBM;

2 system libraries;

3. queries the user for the input;

4 designates the computer storage space to be used for input and

output;
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loads and runs the FORTRAN file;
executes the APL or GRAFSTAT user options;
returns the disk to the original state, i.e. erases the TEXT

and LOAD files, so as not to overload the disk being used.

The Supersmoother smoothing program is invoked by typing
'SUPSMO' and then pressing the ENTER key on the keyboard. Next
the user must read the information displayed and comply with the
instructions. As long as the user follows the instructions, the
smoothing program 'SUPSMO' will produce the desired results. If any
deviations from the requested data occur 'SUPSMO' will let the user
know. The Split Linear Fit smoothing program is just as easy. It is
invoked by typing 'SPTLIN' and pressing the ENTER key on the
keyboard. Read the information on the screen, answer the questions,
and 'SPTLIN' does the rest.

An example of a session using SUPSMO to create the Supersmoother
curve in Figure 5.3 is in Appendix E. A session using the Split Linear
Fit smoothing program SPTLIN basically follows the same line of

questions.
E. OUTPUT FILES

The smoothing programs will put the smooth output where the user
designates unless a file already exits with that name. If a CMS file
already exists by the name that the user wants, then the session will
be terminated, told the reason for the termination and to restart the
program. If the CMS file does not exist then the program continues
normally. For APL files, the program queries the user about the status
of the file, i.e. exiting or to be created. If the new file exists or if
old file does not exist, then the session is terminated, the user is told
the reason for the termination and to restart. One word of caution:
THE SMOOTHING PROGRAMS WILL NOT WRITE OVER AN EXISTING
APL VARIABLE!!! The program will continue running normally, but
the data will be lost. Therefore, it is up to the user to manage the

disk space properly and to keep note of which file contains what type
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of smooth data. The CMS file created by the smoothing programs will
contain five smooth data points per row. The length will depend on the
number of points that are smoothed, i.e. the number of points smoothed
divided by five.

In order to put data into an existing APL workspace or create a
new workspace, the user types in the name of the APL workspace when
asked to do so. The will verify the status of the workspace as mention

before. If everything is satisfactory, the program continues.

Should the user have any specific questions about the programs it
is recommended that the '"TECHNICAL DESCRIPTION' chapter be read.
These chapters basically follow the smoothing procedure step by step.
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APPENDIX A
SUPERSMOOTHER PROGRAM

1. SUPSMO EXEC

The following computer file is SUPSMO EXEC which activates and
runs the Supersmoother smoothing program. Chapter VI contains

instructions on how to use this smoothing program.

&TRACE

SET BLIP x

gﬁgg%g TXTLIB VLNKMLIB VALTLIB VFORTLIB IMSLSP NONIMSL
CLRSCRN

&TYPE YOQU HAVE INITIATED AN ALGORITHM

&TYPE TO SMOQOTH A SET OF DATA USING THE
&TYPE ALGORITHM "SUPER SMOOTHER"

&TYPE DEVELOPED BY FRIEDMAN AND STUETZLE OF
&I'YPE STANFORD UNIVERSITY DEPT. OF STATISTICS

&I'YPE IF GRAPHICS WILL NOT BE USED DEFINE STORAGE AS 102uK
&TYPE BY ENTERING 'DEF STOR 102uK!

&TYPE FOLLOWED BY 'I CMS ’

&TYPE THEN BY 'SUPSMO!

&TYPE DO YOU WISH TO CONTINUE?

&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT

CLRSCREN

&IF &CONT NE Y &GOTQ -EXIT

&TYPE IN ORDER TO USE THIS ALGORITHM

&TYPE YOU MUST HAVE ON HAND THE FOLLOWING:

&TYPE
&TYPE 1. FILENAME OF DATA FILE (FILETYPE DATA) WITH

§%§£§ DATA TO BE SMOOTHED

&TYPE 2. IF DATA POINTS ARE NOT IN CHRONOLOGICAL ORDER,
&TYPE YOU NEED TO HAVE A FILE (FILETYPE ORDER)

&TYPE WITH INDICES CORRESPONDING TO DATA POINTS

25555 INDICATING THE ORDER OF THE DATA POINTS.

&TYPE 3. FILENAME OF DATA FILE WHERE SMOOTHED OUTPUT

&TYPE WILL BE WRITTEN OR IF YQU

&TYPE TO WRITE OUTPUT INTO APL HAVE ON HAND VARIABLE
§§§gg AND WORKSPACE NAMES THAT WILL STORE THE OUTPUT.
&TYPE 4. IF YOU WANT TO SMOQTH THE DATA USING ONLY

&TYPE ONE WINDOW SIZE, HAVE ON HA

§%§gg THE DECIMAL FRACGTION OF THE DATA TO BE USED.

&TYPE S. IF YOU WANT TO SMOOTH THE DATA USING

&TYPE THREE WINDOW SIZES, HAVE ON HAN

gggf: THE THREE DECIMAL FRACTIONS OF THE DATA TO BE
&TYPE

&TYPE DO YQU WISH TO CONTINUE?

&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT

CLRSCRN

&IF &CONT NE Y &GOTO -EXIT
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&TYPE ENTER FILENAME QF FILE WHICH CONTAINS

&TYPE THE DATA TO BE SMOOTHED:

&READ ARGS

&IF &N = 0 &GOTQ -TELL

&IF &N > 1 &GOTQ -TELL

STATE &1 DATA A1

&IF &RC NE 0 &GOTOQO -ERROR

CLRSCRN

~-ORDR CLRSCREN

&TYPE ARE DATA PQINTS TQ BE SMOOTHED

&TYPE IN CHRONQOLOGICAL QRDER?

&TYPE ENTER Y FOR YES OR N FOR NO:

&READ VAR &CONT

&IF &CONT EQ Y &GOTOQ -GO

&TYPE SINCE THE DATA POINTS ARE NOT

&TYPE IN CHRONOQLOGICAL ORDER, THEREFQORE

&TYPE ENTER FILENAME QF FILE (FILETYPE ORDER)

&TYPE THAT CONTAINS ORDER INDICES

&READ VAR &ORD

STATE &ORD ORDER A1l

&IF &RC NE 0 &GOTO - ERROR

- GO _CLRSCRN

&TYPE THE DATA YOU WANT TO SMOOTH IS IN &1 DATA
&TYPE WHERE DO YOU WANT TO WRITE THE SMOOTHED QUTPUT?
&TYPE CMS OR _APL?

-STRT &TYPE YQU CAN PLOT THE SMOOTHED ourpUT

&TYPE IF YOU ARE LOGGED ON A MI AL

&TYPE THAT CAN ACCESS GRAFSTAT . HAVE 2M OF STQRAGE
&TYPE BUT THE QUTPUT MUST BE STORED IN AN APL VARIABLE
&TYPE ENTER _APL OR CMS:

&READ VAR &PLA
&IF &PLA EQ APL &GOTO -AP1
&TYPE

N
E THE SMOOTHED OUTPUT WILL BE WRITTEN
&TYPE TO A CMS FILE (FILETYPE DATA)
&TYPE ENTER ONLY THE FILENAME YOU WANT
&TYPE TQ USE FOR THAT CMS FILE:
&READ VAR &FN
&TYPE THE SMOQTHED QUTPUT WILL BE WRITTEN
&TYPE INTO THE CMS FILE &FN DAT
&GOT0 -COM
-AP1 &TYPE
&TYPE NQT USING THE NAME OF THE FILE
&T'YPE WITH THE INPUT DATA, &1
&TYPE ENTER THE NAME OF THE APL VARIABLE
&TYPE THAT WILL STORE THE OUTPUT:
&READ VAR &4

&TYPE DO YQU WANT TQ PLOT THE QUTPUT?
&TYPg EﬁgER %FFOR YES OR N FOR NO:

&IF &GRF EqQ Y &GOTO - PLOT

&T'YPE ENTER THE NAME OF THE APL WORKSPACE

&TYPE THAT WILL CONTAIN &A

&READ VAR &WKS

&TYPE IS &WKS AN EXISTING WORKSPACE OR A NEW WORKSPACE?
&TYPE ENTER O FOR EXISTING OR N FOR NEW:

&READ ggR &AGE

&GOTO - COM

-PLOT &TYPE CAN _YQU ACCESS 2M OF STORAGE
&TYPE ON THIS DISK (TERMINAL)?

&TYPE ENTER Y FOR YES OR N FOR NO:

&GRF
&IF &GRF EQ N &GOTO -STRT
&FN TE

-COM CLRSCRN

&T'YPE PLEASE READ THE FOLLOWING INSTRUCTIONS VERY CAREFULLY
&TYPE ARE YOU READY TO START THE SUPER SMOOTHING PROGRAM?
&T'YPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
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&READ VAR &0

CLRSCRN

&IF &0 NE Y &GOTQ -EXIT

?%Ygﬁ g%gﬁgE WAIT THE SMOOTHING PROGRAM IS BEING COMPILED

EAR
FORTVS SUPSMO (LVL (77))
FIL 04 DISK & ORD
FIL 07 DISK &1 DATA
gggsongISK &FN DATA (RECFM FBA LRECL 80 BLKSIZE 800)
&TYPE PLEASE WAIT SMOOTHING PROGRAM IS BEING LOADED
LOAD SUPSMO (STAR

CLRSCRN

ERASE SUPSMQ LISTING

ERASE SUPSMQ TEXT

ERASE LOQAD MAP

&IF &PLA EQ CMS &GOTO -EX
&IF &GRF EQ N _&GOTO - NGRF
CP TERMINAL APL _ON

&STACK )LOAD SUPSMO
&STACK g%NGCMSREAD

&STACK 5ATA

&STACK &A < ,&A
&STACK g% <«CHSREAD

&STACK gATA
&STACK &1 « ,&1
AVE

)S
&TYPE x*xxxPLEASE WAIT, LINKING TO GRAFSTAT %% %% %% %k k%kkkkkkkwk
&STACK )YLOAD GRAFSTAT’
&STACK DUM <CMS 'CLRSCRN'
&STACK 7PCOPY SUPSMO
&STACK ST RT
EXEC APLGS™
&GOTQO - DRP
-NGRF CP TERMINAL APL ON
&STA JLOAD SUPSMO
&STACK &4 <«CMSREAD
&STACK &FN
&STACK DATA
&STACK N
&STACK &A <«
&STACK gSAVE
&STACK )CLEAR

&IF &AGE EQ O &STACK ;EOAD &WKS
&IF &AGE EQ N &STACK )WSID &WKS
&STACK )PCOPY SUPSMO &A

&STACK )SAVE

&STACK )OFF HOLD

EXEC APL

-DRP FRASE &FN DATA «

CP TERMINAL APL ON

&STACK )LOAD SUPSMO

&STACK )ERASE &A

&STACK )ERASE &1

&STACK )SAVE

&STACK )OFF HOLD

EXEC APL

-EX &TYPE YOU HAVE FINISHED

&EXIT 1000

-TELL &TYPE YQU HAVE ENTERED TOQ MANY OR
&TYPE NOT ENQUGH ENTRIES ABOUT DATA FILE
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&TYPE YQU NEED TO BEGIN AGAIN BY ENTERING
&TYPE

&TYPE SUPSMO
&EXIT 100

&GOTQ -EX
- ERROR &T'YPE ABQVE ENTERED FILE DATA
&TYPE DQES NOT EXIST ONAIX\"gUR A-DISK

&TYPE THEN BEGIN AGAIN BY ENTERING

&TYPE SUPSNO

&EXIT 101

-EXIT &TYPE YOU HAVE FOQRCED AN EXIT ON THIS SMOOTHING EXEC
&TYPg IF YOU WISH TO BEGIN AGAIN ENTER

&TYPE SUPSNO

&EXIT 102

2. SUPSMO FORTRAN

The following file is SUPSMO FORTRAN which does the actual
smoothing of a data set. The subroutines SUPSMU and SMOOTH of the
folowing FORTRAN program were developed by Friedman and Stutzle
[Ref. 9] as stated in Chapter I.

Cc
C READ SUPSMO EXEC FILE BEFORE USING THIS FILE.

C..- 3

THIS PROGRAM READS THE INPUT DATA, Y(N) VARIABLES FROM THE FILE *
WATER DATA A1 AND THEN USES THE INTERNAL SUPER SMOOTHING SUBROUT.*

IN ORDER TO SMOOTH THE INPUT DATA. *
THE SPANS CAN BE CHANGED BY ENTERING DESIRED SPANS ON THE VERY *
LAST LINE OF THIS FILE. .

AR AR A AR AR AR Ak R A

(@]

INPUT:
N : NUMBER OF OBSERVATIONS (X,Y - PAIRS)
X(N): ORDERED ABSCISSA VALUES
Y(N) : CORRESPONDING ORDINATE (RESPONSE) VALUES
W(N) : WEIGHT FOR EACH (X,Y) OBSERVATION
IPER : PERIODIC VARIABLE FLAG
IPER=1: X IS ORDERED INTERVAL VARIABLE
IPER=2: XIS A PERIODIC VARIABLE WITH VALUES
IN THE RANGE (0.0, 1.0) AND PERIOD 1.0
SPAN : SMOOTHER SPAN (FRACTION OF OBSERVATIONS IN WINDOW).
SPAN=0.0: AUTOMATIC (VARIABLE) SPAN SELECTION
ALPHA: CONTROLS HIGH FREQUENCY (SMALL SPAN) PENALTY
USED WITH AUTOMATIC SPAN SELECTION (BASE TONE CONTROL)
OUTPUT (ALPHA.LE.0.0 OR ALPHA.GT.10.0 : NO EFFECT)
UT:

SMO(N): SMOOTHED ORDINATE (RESPONSE) VALUES
SCRATCH:

SC(N,7): INTERNAL WORKING STORAGE
OTE:

FOR SMALL SAMPLES (N < 40) OR IF THERE ARE SUBSTANTIAL SERIAL
CORRELATIONS BETWEEN OBSERVATIONS CLOSE IN X - VALUE, THEN

A PRESPECIFIED FIXED SPAN SMOOTHER (SPAN > 0) SHOULD BE
USED. REASONABLE SPAN VALUES ARE 0.3 TO 0.5.

O00000O0O000OOOONNDOOO0OOOOOOONOOOO0D
z

REAL"4 Y(5000),X(5000),SMO(5000),W(5000),SPAN,ALPHA,SC(5000,7)
REAL"4 ACVR(50C0), TPANS(3)
INTEGER IR(5000),K,N,IPER,WEI,ODR
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DOUBLE PRECISION WT,FBO,FBW,XM,YM,TMP,VAR,CVAR,A H,SY
8 COMMON /CONSTS/ BIG,SML,EPS

: WRITE(S,1)
1 FORMAT(1X,’ENTER THE NUMBER OF DATA POINTS TO BE SMOOTHED—
{ *INTEGER VALUFE’)
READ(6,")N

18 DO 19 I=1,N

SO 19 W(l)=1.

9 WRITE(S,12)

12 FORMAT(1X.’ARE THE INPUT DATA POINTS IN CHRONOLOGICAL

ael “ORDER?,/,1X,’ENTER 0 FOR NO OR 1 FOR YES’)

o READ(6,")JODR

IF(ODR.EQ.1)GO TO 13
. READ(4,*)}(X(}),1 = 1,N)
GO TO 14
13 DO 151=1,N
15 X(1)=FLOAT(l)
B 14 CALL FRTCMS(’CLRSCRN *)
WRITE(5,5)
- 5 FORMAT(1X,’ENTER 1.0 IF YOU DESIRE TO USE ONLY ONE SPAN VALUFE’,
*/’ENTER 0.0 IF YOU WANT TO USE THREE SPAN VALUES’)
. READ(6,*)SPAN
CALL FRTCMS{’CLRSCRN *)
. IF(SPAN.EQ.1.0)THEN
WRITE(S,8)N
8 FORMAT(1X,’ENTER THE SPAN VALUE TO BE USED’,/,1X,’FRACTION OF’ 15,
s *|.E. A REAL NUMBER BETWEEN 0.0 AND 1.0")
READ(6,)SPAN
! ALPHA = 0.0
peel ELSE
- WRITE(5,2)N
. 2 FORMAT(1X,’ENTER THE LOWEST SPAN VALUE:,/,1X,’FRACTION OF’,
1 *15, I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0")
. READ(8,*)TPANS(1)
WRITE(5,3)N
3 FORMAT(1X,’ENTER THE MIDDLE SPAN VALUE”,/,1X,’FRACTION OF’
*,15,'1.E. A REAL NUMBER BETWEEN 0.0 AND 1.0")
: READ(6,*)TPANS(2)
- WRITE(5,4)N
- 4 FORMAT(1X,’ENTER THE HIGHEST SPAN VALUE:./,1X,/FRACTION OF’
*15” 1.E. A REAL NUMBER BETWEEN 0.0 AND 1.0°)
READ(6,*)TPANS(3)
CALL FRTCMS(’CLRSCRN )
T 1 WRITE(5,16)
) 16 FORMAT(1X,’IF ONE OF THE SPAN VALUES IS SMALL"/,
. ~|.E. RESULTS IN A SMALL WINDOW SIZE (10 OR LESS)’/,
S *~YOU MAY WISH TO ADJUST THE SMOOTH CURVE ROBUSTNESS’,/,
*BY ENTERING A REAL NUMBER GT 0.0 BUT LT 10.0°,/,
~FOR NO ROBUST ADJUSTMENT ENTER 0.0%,/,
~*OR COMPLETE ROBUST ADJUSTMENT ENTER 10.0’,/,
o ~ENTER YOUR CHOICE’)
ay READ(6,*)ALPHA
K CALL FRTCMS{’CLRSCRN *)
e ENDIF
L WRITE(6,20)
‘. 20 FORMAT(1X,"****PLEASE WAIT SMOOTHING PROGRAM NOW RUNNING*****")
READ(7,*)(Y(I), =1,N)
IF(ODR.EQ.1)GO TO 17
) . CALL SORTER(X,W,Y,N)
AN 17 IPER =1
e IF{X{N).EQ.1.0)IPER =2
oy 7 CALL SUPSMU(N,X,Y W, IPER,SPAN,ALPHA,SMO,SC, TPANS)
o WRITE(8,10)(SMO(1),I = 1,N)
10 FORMAT(2X,5(F12.6,2X))
STOP
o END
. C.-.n--.nn--n---an---.....----.--n---n-nn--n---n----n-.n-----n----unnn

X0 c

e C--t.n----nn--.nn..---n--n-nl--ll----n--n--t--.--n----nn-nn--n--n-n--n

W SUBROUTINE SUPSMU(N,X,Y,W,IPER,SPAN,ALPHA SMO,SC,TPANS)
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10

20
30

40

50

60

70

80

90

100
110

DIMENSION X(N),Y(N),W(N),SMO(N),SC(N,7), TPANS(3)
COMMON /CONSTS/ BIG,SML,EPS

IFY(X((;I()).GT.XU ))GO TO 30

SY=0.

SW=8Y
DO 10J=1,N
SY =SY + W({J)"Y(V)
SW=SW+W({J)
CONTINUE
A=SY/SW
DO20J=1,N
SMO(J)=A
CONTINUE
RETURN
I=N/4
J=3
SCALE =X{J)-X(1)
IF(SCALE.GT.0.0)GO TO 50
IF(J.LT.NW =J + 4
IF(L.GT.1)i = -1
SCALE = X(J)-X(1)
GO TO 40
VSMLSQ = (EPS*SCALE)**2
JPER = IPER
IF(IPER.EQ.2.AND.(X(1).LT.0.0.0R.X(N).GT.1.0))}JPER = 1
IF(JPER.LT.1.OR.JPER.GT.2)JPER = 1
IF(SPAN.LE.0.0)GO TO 60
CALL SMOOTH(N,X,Y,W,SPAN,JPER VSMLSQ,SMO,SC)
RETURN
DO 70 =13
CALL SMOOTH(N.X,Y,W,TPANS(1),JPER, VSMLSQ,SC(1,2*1-1),SC(1.7))
CALL SMOOTH(N.X.SC(1,7).W,TPANS(2),~JPER,VSMLSQ,SC(1,2"1).H)
CONTINUE
DO 80 J=1.N
RESMIN = BIG
DO 80 |=13
IF(SC(J,2"1).GE.RESMIN)GO TO 80
RESMIN = S(J,21)
SC(J,7)=TPANS(l)
CONTINUE
IF(ALPHA.GT.0.0.AND.ALPHA.LE.10.0.AND.RESMIN.LT.SC(J,6))SC(J.7)
=SC(J,7) + (TPANS(3)-SC(J,7))*AMAX1 (SML,RESMIN/SC(J,6))**(10.0-
*  ALPHA)
CONTINUE
chL gl\\JAOOTH(N.X,SCU ,7).W,TPANS(2),~JPER,VSMLSQ,SC(1,2),H)
DO 110 J=1,N
IF(SC(J,2).LE. TPANS(1))SC(J,2) = TPANS(1)
IF(SC(J.2).GE.TPANS(3))SC(J,2) = TPANS(3)
F =SC(J,2)-TPANS(2)
IF(F.GE.0.0)GO TO 100
F = -F/(TPANS(2)-TPANS(1))
SC(J,4) = (1.0-F)*SC(J,3) + F*SC(J1)
GO TO 110
F = F/(TPANS(3)-TPANS(2))
SC(J.4) = (1.0-F)*SC{J,3) + F*SC(J,5)
CONTINUE
CALL SMOOTH(N,X,SC(1,4),W,TPANS(1),~JPER VSMLSQ,SMO,H)
REEU RN
EN

C--nn

ARRARNN ARRARARRAARAARARRARRRRARAARRARKKARARAARARR

C.-A--nnn------nn--n----n.t--nan----n----qnn--AQ-tnt--.-ntnﬁltnn--.---

SUBROUTINE SMOOTH(N,X,Y,W,SPAN,IPER VSMLSQ,SMO,ACVR)
DIMENSION X(N),Y(N),W(N),SMO(N),ACVR(N)

INTEGER IN,OUT

DSUBoLg PRECISION WT,FBO,FBW,XM,YM,TMP VAR ,CVAR A H,SY
XM =0.

YM =XM

VAR =YM

CVAR=VAR
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FBW=CVAR
JPER = |ABS(IPER)
IBW=0.5"SPAN*N+0.5
IF(IBW.LT.2)IBW=2
IT=2*1BW+ 1
DO 23 [=1,T
-
IF(JPER.EQ.2)J = I-IBW-1
XTl=X(J)
IFJ.GE.1)GO TO 10
J=N+J
XT1=X(J)-1.0
10 WT =W(J)
FBO=FBW
FBW = FBW+WT
XM = (FBO*XM + WT*XTI)/FBW
YM = (FBO*YM + WT*Y(J))/FBW
TMP=0.0
IF(FBO.GT.0.0)TMP = FBW*WT*(XTI-XM)/FBO
VAR = VAR + TMP*(XTI-XM)
CVAR =CVAR + TMP*(Y(J)-YM)
20  CONTINUE
DO70J=1,N
OUT = J-1BW-1
IN=J+ IBW
IF((JPER.NE.2). AND.(OUT.LT.1.0R.IN.GT.N))GO TO 60
IF{OUT.GE.1)GO TO 30
OUT=N+0UT
XTO = X(OUT)-1.0
XT1=X(IN)
GO TO 50
30 IF(IN.LE.N)GO TO 40
IN=IN-N
XTI =X(IN)+ 1.0
XTO = X(OUT)
GO TO 50
40 XTO = X(OUT)
XT1 = X(IN)
50 WT =W(OUT)
FBO=FBW
FBW = FBW-WT
TMP=0.0
IF(FBW.GT.0.0)TMP = FBO*WT*(XTO-XM)/FBW
VAR = VAR-TMP*(XTO-XM)
CVAR = CVAR-TMP*(Y(OUT)-YM)
XM = (FBO*XM-WT~XTO)/FBW
YM = (FBO~YM-WT"Y(OUT))/FBW
WT =W(IN)
FBO = FBW
FBW = FBW+WT
XM = (FBO"XM + WT*XT1}/FBW
YM = (FBO*YM + WT Y(IN)}/F BW
TMP=0.0
IF(FBO.GT.0.0)TMP = FBW*WT*(XTI-XM)/FBO
VAR = VAR + TMP*(XTI-XM)
CVAR = CVAR + TMP*(Y(IN)-YM)
60 A=0.0
IF(VAR.GT.VSMLSQ)A = CVAR/VAR
SMO(J) = A*(X{J)-XM) + YM
IF{IPER.LE.0)GO TO 70
H=1.0/FBW
IF(VAR.GT.VSMLSQ)H = H + (X(J)-XM)**2/VAR
ACVR({J) = ABS(Y(J)-SMO(J))/(1.0-W(J)*H)
70  CONTINUE
J=1
80 JO=J
SY = SMO(J)*"W(J)
FBW = W(J)
IF(J.GE.N)GO TO 100
80  IF(X(J+1).GT.X(J))GO TO 100
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, Jm=J+1
oy SY = SY + W(J)*"SMO()
N1 FBW = FBW + W(J)
2 IF{(J.LT.N)GO TO 90
v 100 IF(J.LE.JO)GO TO 120
( SY =SY/FBW
LR DO 110 |=JOJ
SMO(l)=SY
110  CONTINUE
120 J=J+1
N IF(J.LE.N)GO TO 80
. RETURN
END

QOO0

Y
A SUBROUTINE SORTER(X,W,Y,N)
T REAL*4 X(N),W(N),Y(N),D(5000)
RN INTEGER N,KEY(5000)
O DOS5|=1,N
. 5 KEY(l)=1
CALL SHSORT(X,KEY,N)
AN DO11=1N
S 1 D(1) = W(l)
L DO21=1,N
. J=KEY(!)
O 2 wW(l)=D()
DO31=1,N
. 3 D(1)=Y(I)
@ DO41=1N
F J=KEY(l)
4 Y(1)=D()
RETURN
END

kS c------ .........

BLOCK DATA

THIS SETS THE COMPILE TIME (DEFAULT) VALUES FOR VARIOUS
INTERNAL PARAMETERS:
BIG : A LARGE REPRESENTATIVE FLOATING POINT NUMBER
SMALL : A SMALL NUMBER. SHOULD BE SET SO THAT (SML)**(10.0)
DOES NOT CAUSE FLOATING POINT UNDERFLOW
EPS : USED TO NUMERICALLY STABILIZE SLOPE CALCULATIONS FOR
RUNNING LINEAR FITS
THESE PARAMETER VALUES CAN BE CHANGED BY DECLARING THE RELEVANT
LABELED COMMON IN THE MAIN PROGRAM AND RESETTING THEM WITH
EXECUTABLE STATEMENTS.

-
0000000000 000000O

N COMMON /CONSTS/ BIG,SML.EPS
R DATA BIG,SML.EPS /1.0E20,1.0E-7,1.0E-3/
END

A 3. SUPSMO VSAPLWS

o The following two APL functions are used in conjuction with the two
'.::‘_..: files listed above. They were developed by the author of this thesis,
:"ij and are the main APL functions within the APL workspace SUPSMO.
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The first APL function links the user of the smoothing program with
GRAFSTAT and gives a user familiar with GRAFSTAT the opportunity
to proceed into GRAFSTAT where a greater variety of graphic functions
are available.

Vv ST RT;C
DUM«CMS 'CLRSCRN!
'TH&%@E DATA FILE THAT YOU WANTED SMOOTHED HAS
'‘TO THIS WORKSPACE SO THAT YOU MAY BE ABLE TO PLOT

'THE SMOOTHED AND UNSMOOTHED DATA.'
é?HE UNSMOOTHED DATA IS IN THE VARIABLE WITH THE SAME

:TF'IE' DATA FILE THAT YOU HAVE YOUR INPUT DATA IN.'

'DO YOU WISH TQ GQ INTQ APL OR CONTINUE?!

)

SR
S
s
=

&)

% C"Ell\S’TER 0O FOR APL OR 1 FOR CONTINUE!
] »13+Cx8
] 'YOU WILL BE SENI TQ APL AFTER YOU HAVE READ THIS
QRTANT TEXT.
TI}E'**AFTER YOU HAVE FINISHED WORKING IN APL AND WISH TO

'E’NTE’R PLOTE’R*******NOTICE’ THAT PLOTER HAS ONLY ONE T

'NOW ENTER 0 AGAIN'
c<l

[ e e amn i v L LotV Ve Ve Ve T v T P (v o T Lo o Toa o |
NN R AR R P R R O ONO BT EQWi

AR OWO~OUNOEFNGWN R OLIL AL LI IRLI

| U [ N | B | N S| W | -} Pil_l

>C
PLOTER

The next APL function creates the APL variables to be used in the
GRAFSTAT 'PLOT' screen. This plotting option is made available to the
user through the above APL function. The user can use this APL
function to do the plotting or use the GRAFSTAT graphics functions.
A user need not fully understand how to use the GRAFSTAT plot
screen in order to use this function. Several examples are shown with
each requested entry so that the user can see what the entry should
look like.

PLOTER; DUM P;SY:TIsTL3TR;XL:X05XS:XT3XY XV L3 Y05¥S: 1T

(1] bum«cmé LRSCRNT

[2] TYOU™ HZVE ACTIVATED THE PLOTTING FUNCTION!

£3] ‘1T 1S ASSUMED THAT THE USER IS FAMILIAR WITH THE
GRAFSTAT PLOT FUNC

(u] 'AND THE AXIS CONTROL FUNCTION!
[5] 'TF "YOU 'RECEIVE (MAKE) AN ERROR MESSAGE DO THE
FOLLOWING!

(6] '1, ENSURE THAT VM READ IS DISPLAYED IN LOWER RIGHT
CORNER OF SCREEN

[7% '2. PRESS THE ENTER KEY'

(8 '3, ENTER PAGE"!

[9] 170 UNDERSCORE A 'LETTER HOLD THE APL/ALT KEY DOWN AND
PRESS THE LETTER'!

(10] 'THE PLOTTING FUNCTION WILL RESTART AT THE BEGINNING'
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'THE PLQTTING FUNCTION CAN BE EXITED AT ANY INPUT
T ?Y ENTERING' .
>

VAT ANYTIME THAT YOQU EXIT THE PLOTTING FUNCTION'
'YOQU WILL BE IN THE GRAFSTAT WQORKSPACE'
'IF YOU WISH TQ RETURN IO CMS ENTER'

JOFF HOLD!

1 !

LB:'ENTER X VARIABLE(S) (ENCLOSED IN QUOTES), 1IF
RING MORE THAN ONE VARIAE

'"SEPARATE VARIABLES WITH SEMICOLON AND USE QUOTES!

'g Go T'X'YY OR ''X13X2!

DUMéCMS '"CLRSCRN'
TEK Y VARIABLE(S) (ENCLOSED IN QUOTES AND MUST BE

AME LENGTH AS X)!
Eﬂf ENTERING MORE THAN ONE VARIABLE, SEPARATE WITH

'AND REMEMBER TO USE QUOTES ENCLOSING ENTIRE STRING!
'E.G. Y'Y'' OR ''Y1;Y

“TENTER Abqu'CTOR INDICATING TYPE(S) OF PLOT; 0=SYM

FWNRONDVONOUEWN NI

[T ¢, T T | TS O S T A O - B

Q
Q
N

[y
11l
]
~ <=
=2
txy
Q
=

TP<N

S{(x/TP)>0)/L1

'"ENTER TYPE OF SYMBOL CORRESPONDING TO EACH SYMBOLS
PQOT (IN QUOTES)'

E.G. '"','' OR 'V %x'!' YOU CAN USE .x+x!
SY<l
>{(+/TP)=0)/LP
L%'bEgEERIN VECTOR INDICATING TYPE(S) OF LINES:; 1=SOLID
'E.G. OR 3 OR 1 3 OR ANY OTHER COMBINATION OR LINE
S IN GRAFSTAT'
TL<N
LPITL<
>(Tp TP)>1)/L2
SZ+ .
L?.DUM+CMS 'CLRSCRN'
'ENTER SCA OF X-AXIS (IN QUOTES) OR P (IN QUOTES)

PREVIOUS SCALE'
'F.G. "'LIN'' OR ''LIN XMIN XMAX'' OR ''P'' !

XS«

YENTER SCALE OF Y-AXIS (IN QUOTES) OR P (IN QUOTES)
PREVIOUS SCALE'

'E, "'LIN'' OR ''LIN YMIN YMAX'' QR ''pP'! !

Ys N
TENTER THE PLOT HEADER (IN QUOTES) OR EMPTY QUOTES'
‘E.G. '"'TITLE'' OR !

TI<0

DOM<CMS 'CLRSCRN'

TENTER X-AXIS LABEL (IN QUOTES) OR !

'A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS

ROL
"E.G. '"'LABEL'' OR '' '' !
XL+0
YENTER_ Y- AXIS LABEL (IN QUOTES) OR'
cor & PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS
O%g.c. viaBLEtr om 11 v
YL<Q

TDO YOU WANT TO RUN THIS PAGE?!

égNgER 0 FOR NO OR 1 FOR YES!
<

DUM*CMS 'CERSCRN'

"ug"’ XTCO )

tPe 1. T 1

<~ 0100

(o s o 2 o LD L o e (D Lo e e e Y L Lo e 1> e s eV Vann L L o T Vo T Vo Lo Vo Vo o Vo T Yo Vo T P 1 Vo T Yo Pom Ve Tomn Vo T T Vo Mo g T Vo T Vo 1 o T |
]
(A)

OO QUUUIQUUUIUINNEFQEEFQOFEFFFFFOKOLNWWWWZWWWWISNNNNENHIRONNONNSRPRP R R B RO

ONOUEWNPRPOZOVONNSNEWNROVEOINOUEGFWNRLOOVNYOSNOUENIWNRP OV O
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'PLEASE WAIT RUNNING PAGE'

RUN PAGESAM

TDO YOU WANT TQ EXIT THIS FUNCTION?'
'gNgER 0 FOR NO OR 1 FOR YES!

>(c0=1)/LE
'DY"YOU WANT TQ RESTART THIS FUNCTION?'
LENTER 0 FOR NO OR 1 FOR YES'
DOM<CHS | CLRSCRN'
>
'7HE ONLY THING LEFT TQ DO IS THE AXIS CONTROL'
L6:'WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED

TRUCTIN
'"ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT!
'1gT ELEMENT, 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN

EE

:2ND ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON

) éag%vﬁ%EMENT, 1(0): AXES, GRIDS, AND GRID LINES ARE
'E.G. 1 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT AXES

GR%DNLINES'

<
TENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL'
'1ST ELEMENT, X-AXIS: 0 = BOTTOM, 2 = TOP, OR AT

'2ND ELEMENT, Y-AXIS: 1 LEFT, 3 = RIGHT, OR 21 AT
'3RD ELEME%? VERTICAL GRID LINES: 0=NO GRID,
'uTH ELE%%%%, HORIZON. GRID LINES: 0=NO GRID,

2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND

by O
=

'E.G. 2 1
D GRID'LINES'
{—
L8:'PLEASE WAIT RUNNING PAGE'
RUN PAGESAM
LA:DUM<CMS 'CLRSCRN!
"ENTER X-AXIS TIC MARKS LQCATION VECTOR'
'OR_ENTER O FOR STANDARD TIC MARKS'
'OR ENTER 1. FOR NO T10 MARKS'®
'E.G. 1 5 11 QR A VECTOR NAME OR 0 OR 1'
yb.3 11 WILL SHOW TIC MARKS A1 X=1, X=5, AND X=11'
(—
TENTER X-AXIS _SYMBOLS (IN QUOTES)'
'OR ENTER O WITHOUT QUOTES FOR STANDARD SYMBOLS'
'OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS'
yE.C. 1719703187171 OR"A VECTOR NAME OR 0 OR 1'
-«
TENTER X-AXIS SYMBQLS LOCATIONS VECTOR'
Lg+OF ENTER 0" FOR SYNBOLS AT DEFAULT LOCATIONS OR NO
'E.G, 6 _18 QR A VECTOR NAME QR 0!
5 48 WILL SHOW 1370 AT X=6 AND 1371 AT X=18!
(—
DOM<Chs ' CLRSCRN
TENTER Y- AXIS TIC MARKS LOCATIQN VECTOR'
'OR ENTER 0 FOR STANDARD TIC MARKS'
'OR ENTER 1 FOR NO TIC MARKS'
'E.G, 1 0 1 OR A4 VECTOR NAME OR Q OR 1!
ypig® 1 WILL SHOW TIC MARKS AT Y='1, Y20, AND Y=1'
‘.
TENTER Y-AXIS SYMBOLS (IN QUQTES)'
'OR ENTER O WITHOUT QUOTES FOR STANDARD SYMBOLS'
'OR ENTER 1 WITHQUT QUOTES FOR NO SYMBOLS'
'E.G. ''LO MID HI'' QR VECTOR NAME OR O OR 1!

YY<0
TENTER Y-AXIS SYMBOLS LOCATIONS VECTOR!

O N e e e e = e e s i i~ N Qi Qv e ey
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NN B R b b i R R 0000000000 WONOMENWONTROOQOWONTOQUINE WNROOVONONEWNROW
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R E%ﬁ;gzs'OR ENTER 0 FOR SYMBOLS AT DFEFAULT LOCATIONS OR NO
S (1281 'I E. "1 0 1 OR VECTOR NAME OR Q!
N E%gg% Y 1N0 1 WILL SHOW LO AT Y= 1, MID AT Y=0, HI AT Y=1!
( E%g%% ;g%ESE éﬁﬁs CONTROL ENTRIES WILL NOW BE RUN!
- (133] TDQ YOU WANT TO RERUN THE PLOT INPUTS YQU ENTERED!
s [134] 'BEFORE RUNNING THIS AXIS CONTROL FUNCTIQON?!
£135] 'ENTER 0 FOR NO OR 1 FOR YES!
[136] CO<N
[137] >(C0=1)/Lé6
{138] 'DO YOU WANT TO DO ANOTHER AXIS CONTROL PAGE?!
£139] 'ENTER 0 FOR NO OR 1 FOR YES!
. {140] (o<l
.- [141] >(€0=1)/L8
" f1u2] 'DO YOU WANT TO RESTART THE FUNCTION?'
v [(1u43)] LE:'IF YQU DQ NOT YOU WILL EXIT THIS FUNCTION'
' 552;9 ‘IF YOU EXIT THIS FUNCTION AND WANT TO RETAIN THIS
. T
Eﬁg?] ‘*USE THE KEEP FUNCTION AND THEN YOU CAN ERETURN TO
Ry [1u6] 'BY ENTERING )OFF HOLD!
L f1u7] 'IF YOU WANT TO RETURN TO CMS, SIMPLY ENTER )OFF HOLD
AFTER EXIT!
[1u48] 'ENTER 0 FOR EXIT OR 1 FOR RESTART!'
£149] CO<N
£150] >(Cc0=1)/LB
(151] 10
§ v
.

g,
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APPENDIX B
SPLIT LINEAR FIT PROGRAM

1. SPTLIN EXEC

The following file is the exec file, SPTLIN EXEC, which activates
and runs the Split Linear Fit smoothing program. Chapter VI contains

instructions on how to use this smoothing program.

gﬁgB%g TXTLIB VLNKMLIB VALTLIB VFORTLIB IMSLSP NONIMSL
CLRSCRN
&TYPE YQU HAVE INITIATED AN ALGORITHM
&TYPE TO SMOOTH A SET OF DATA USING

b &TYPE 'SMOQOTHING WITH SPLIT LINEAR FITS!

- &TYPE DEVELOPED BY MCDONALD AND OWEN OF

!‘ &TYPE STANFORD UNIVERSITY DEPT. QF STATISTICS

- - STRT &TYPE & % % % % % % % % % % % % %k % % % % % & % % % %k % % A ok ok A & % ok % ok K ok k& ok & ok ok
&I'YPE IN ORDER TO USE THIS ALGORITHM USE A 2M MACHINE %«

ST YPE % % ¥ s ko % &k & ok sk ok &k Ak K ok ok ok v o e e e ok sk ok ok o v ok v ok vk o T T % e R Y e e vk ok

&TYPE DO YOU WISH TQ CONTINUE?

&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT

CLRSCRN

&IF &CONT NE Y &GOTO -EXIT

&TYPE IN ORDER TO USE THIS ALGORITHM YOU MUST
&TYPE HAVE ON HAND THE FOLLOWING:

&TYPE
&TYPE 1., FILENAME OF DATA FILE (FILETYPE DATA)
§g§§§ WITH DATA TO BE SMOOTHED.
&TYPE 2, 'IF DATA POINTS ARE NOT IN CHEONOLOGICAL ORDER,
&TYPE YOU NEED TQ HAVE A FILE (FILETYPE ORDER)
&TYPE WITH INDICES CORRESPONDING TQ DATA PQINTS
§g§§§ INDICATING THE ORDER OF THE DATA POINTS.
&T'YPE 3. FILENAME QF DATA FILE WHERE SMOOTHED QUTPUT
&TYPE WILL BE WRITTEN QR IF YOQU WANT
&TYPE T WRITE QUTPUT INTQ APL HAVE ON HAND
&TYPE THE APL VARIABLE AND WORKSPACE NAMES
gg§g§ THAT WILL STORE THE OUTPUT.
&T'YPE 4, THE NUMBER OF WINDOW SIZES
&TYPE AND THE VALUE OF THE WINDOW SIZES
&TYPE THAT YOU WANT TO ATTEMPT
§§§g§ ON THE SMOOTHING OF THE DATA.
&TYPE 5. THE MINIMUM WINDOW SI.E THAT
gg§§§ CAN BE ATTEMPTED BY THE ALGORITHM.
4

&TYPE DO YQU WISH TO CONTINUE? !
&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT: i
&READ VAR &CONT !
CLRSCRN ;
&IF &CONT NE Y &GOTO - EXIT :
&TYPE CAN YOU ACCESS 2M OF STORAGE ON THIS DISK?
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&TYPE ENTER Y FOR YES OR N FOR NO:

&READ VAR &CONT

&IF &CONT EQ N &GOTO -STRT

&IF &CONT NE Y &GOTQ -EXI

&TYPE ENTER FILENAME OF FILE WHI

&TYPE CONTAINS THE DATA TO BE SMOOTHED'
&READ ARGS

&IF &N = 0 &GOTOQ -TELL

&IF &N > 1 &GOTOQ -TELL

STATE &1 DATA A1

&IF &RC NE 0 &GOTO - ERROR

CLRSCEN

-ORDR CLRSCRN

&TYPE ARE DATA POINTS TQ BE SMOOTHED

7type IN CHRONOLOGICAL ORD

&T§ E ENTER Y FOR YES OR N FOR NQ:

&READ VAR &CONT

&IF &CONT Eg Y &GOTO -GO

&TYPE THE DATA POINTS ARE NOT

&TYPE IN CHRONOLOGICAL OEDER?

&TYPE ENTER FILENAME QF FILE (FILETYPE ORDER)
&TYPE THAT CONTAINS ORDER INDICES

&READ VAR &OR

STATE &ORD ORDER 41

&IF &RC NE 0 &GOTO - ERROR

-G0 _CLRSCRN

&TYPE THE DATA YOU WANT TO SMOOTH

&TYPE IS IN DATA

&TYPE WHERE DO YOU WANT TO WRITE THE SMOOTHED QUTPUT?
&TYPE CMS OR APL

&TYPE OR YOU CAN PLOT THE SMOOTHED QUTPUT
&TYPE SINCE YOQU ARE LOGGED QN

&TYPE TEEMINAL THAT CAN ACCESS GRAFSTAT,
&TYPE BUT THE QUITPUT MUST BE STORED

&TYPE IN AN APL VARIABL

&TYPE ENTER APL OR CMS

&READ VARS &PLA

&IF &PLA EQ APL &GOTQO -AP1

&TYPE

CLRSCRN

&TYPE THE SMOQTHED QUTPUT WILL BE WRITTEN
&TYPE INTO A CMS FILE (FILETYPE DATA)

&TYPE ENTER ONLY THE FILENAME.

&READ VAR &FN

&T'YPE THE SMOOTHED OUTPUT WILL BE WRITTEN
&TYPE INTQ THE FILE &FN DATA

&GOTO0 -COM

-4P1 &TYPE

&TYPE ENTER THE NAME OF THE

&TYPE APL VARIABLE TO HOLD THE OUTPUT

&READ VAR &4

&TYPE DO YOU WANT TQ PLQOT THE OUTPUT?

&TYPE ENTER Y FOR YES OR N FOR NO:

&READ VAR &GRF

&IF &GRF EQ Y &GOTQ -PLOT

&ITYPE ENTER THE NAME OF THE APL WORKSPACE
&TYPE THAT WILL CONTAIN &A

&READ VAR &WKS

&TYPE IS &WKS AN EXISTING WORKSPACE OR A NEW WORKSPACE?
&TYPE ENTER O FOR EXISTING OR N FOR

&READ VAR &AGE

-PLOT &FN = TE

-COM _&TYPE

&TYPE PLEASE READ THE FOQLLOWING INSTRUCTIONS VERY CAREFULLY
&TYPE ARE YOU READY TO START THE SMOQTHING PROGRAM?
&TYPE ENTER Y FOR YES ANY OTHER KEY TO EXIT
&READ VARS &0

CLESCRN

&IF &0 NE Y &GOTO -EXI

&TYPE PLEASE WAIT THE SMOOTHING PROGRAM IS BEING COMPILED
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CalbalafallN '2".“'1":"'."'?“-".'?‘.‘-‘\.1

FI Q04 CLEAR
FI 05 CLEAR
FI 06 CLEAR
FI 07 CLEAR
FI 08 CLEAR
FI 09 CLEA

I

FORTVS SPTLIN(LVL (77) SDUMP

FIL Qu DISK &ORD Q

FIL 07 DISK &1 DATA

gggsggNDISK &FN DATA (RECFM FBA LRECL 80 BLKSIZE 800)
&T'YPE PLEASE WAIT SMOOTHING PROGRAM IS BEING LOADED
LOAD SPTLIN (START

CLRSCRN

ERASE SPTLIN LISTING

ERASE SPTLIN TEXT

EFRASE _LOAD MAP

&IF &PLA EQ CMS &GOTO -EX

&IF &GRF EQ N _&GOTO - NGRF

CP TERMINAL APL ON

&STACK )LOAD SPTLIN

&STACK &A <CMSREAD

&STACK &FN

&STACK DATA

&STACK N

&4 <« ,&A
&STACK g% «CHSREAD
&STACK gATA

&STACK &1 « ,&1
&STACK )SAVE’

&TYPE wxxxPLEASE WAIT LINKING TO GRAFSTAT % k% %k kkkk k% kk
&STACK )LOAD GRAFSTAT

&STACK DUM <CMS 'CLRSCRN!

&STACK 7PCOPY SPTLIN

&STACK ST RT

EXEC APLGS

&GOTQ -DRP

-NGRF CP _TERMINAL APL ON

&STACK )LOAD SPTLIN

&STACK &A «CMSREAD

&STACK &FN

&STACK DATA

&STACK N

&STACK &A <« ,&A4

&STACK )SAVE

&STACK )CLEAR

&IF &AGE E§ 0 &STACK gLOAD SWKS

&IF &AGE EQ N &STACK )WSID &WKS
&STACK )PCOPY SPTLIN &A

&STACK )SAVE

&STACK )OFF HOLD

EXEC APL

-DRP ERASE &FN DATA

CP TERMINAL APL QN

&STACK )LOAD SPTLIN

&STACK )ERASE &4

&STACK )ERASE &1

&STACK )SAVE

&STACK OFF HOLD

EXEC APL

-EX &TYPE YOU HAVE FINISHED,

&EXIT 1000

-TELL &TYPE YQU HAVE ENTERED TOO MANY OR
&TYPE NOT ENQUGH ENTRIES ABQUT DATA FILE
&TYPE YOU NEED TO BEGIN AGAIN

&TYPE ENTER: SPTLIN

&EXIT 100

-ERROR &TYPE ABOVE ENTERED FILE DATA
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&TYPE DOES NOT EXIST ON YOUR A-DISK
&TYPE CHECK gglz{gIvaLIST AND THEN BEGIN AGAIN BY ENTERING

101
-EXIT &TYPE YOQU HAVE FQRCED AN EXIT ON THIS SMOOTHING EXEC
&TYPE IF YOU Ié'f;f'gzﬁo BEGIN AGAIN ENTER

&EXIT 102
2. SPTLIN FORTRAN

The following file is SPTLIN FORTRAN which does the actual
smoothing of a data set. The subroutines used in this program were
developed by McDonald and Owen [Ref. 10] as stated in Chapter 1.
These subroutines were originally written in the C computer language.
The author of this thesis translated the C language subroutines and
combined them into an interactive FORTRAN program which follows,

DOUBLE PRECISION WEIGHT, Y(1000),X(1000),W(1000), TRY{1000,8,9)
DOUBLE PRECISION TSMO(1000),SMOOTH(1000)
REAL INFIN, CEPS, MISVAL, RESCAL, WTPOW
ngiT‘EAGsR CMXOBS, CMXTRY, MNWNSZ, BASE, TRYSPN(10), NOBS, NTRYS,
. 1S
COMMON /CONSTS/ INFIN,CEPS;MISVAL, RESCAL WTPOW
WRITE(5,2)

2  FORMAT{1X ENTER THE NUMBER OF DATA POINTS TO BE SMOOTHED
»—INTEGER VALUE/)
READ(6,")NOBS
13 DO 15 | = 1,NOBS
15 W(l)=1.
14 WRITE(5,16)
16 FORMAT(1X,’ARE THE INPUT DATA POINTS IN CHRONOLOGICAL ORDER?’
*/.1X’ENTER 0 FOR NO OR 1 FOR YES"./)
READ(6,") ODR
IF(ODR.EQ.1)GO TO 17
READ(4,*)(X(1),| = 1,NOBS)
GO TO 18

17 DO 19 | = 1,NOBS

19 X(1)= FLOAT(!)

18 CALL FRTCMS("CLRSCRN *)
WRITE(5,5)

5 FORMAT(1X,’ENTER THE NUMBER WINDOWS TO BE USED
»——INTEGER VALUE ")
READ(6,*)NTRYS
CALL FRTCMS(’CLRSCRN *)
WRITE(S,10)
10 FORMAT(1X,’NEXT ENTER THE WINDOW SIZES IN INCREASING ORDER
*——INTEGER VALUES’" /)
DO 8 I=1,NTRYS
WRITE(5,9)|
9 FORMAT(1X,’ENTER WINDOW SIZE NUMBER’,14./)
READ(8,")TRYSPN(1)
CALL FRTCMS("CLRSCRN *)
8 CONTINUE
WRITE(5,11)
1 FORMAT(1X,’"ENTER VALUE OF THE MINIMUM WINDOW SIZE
*—INTEGER’,/)
READ(6,")MNWNSZ
CALL FRTCMS("CLRSCRN *)
WRITE(5,20)
20 FORMAT(1X,’*****PLEASE WAIT PROGRAM NOW RUNNING****222+}
RESCAL = 1.0
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WTPOW = 2.0
READ(7.*)(Y(1),| = 1, NOBS)
IF(ODR.EQ.1)GO TO 21
CALL SORTER(X.W.Y,N)

21 CONTINUE
DO 12 | = 1,NTRYS
DO 12 J=1,NOBS

TRY(J.1,1)=0.0
TRY(J.1.2) =0.

0
0
0
.0
0
0
0
0

12 CONTINUE
DO6 | = 1, NTRYS
CALL RUNLRC(NOBS, X, Y, W, NTRYS, MNWNSZ, TRYSPN,|,TRY)
6 CONTINUE
CALL COMPWT(NOBS, NTRYS, TRY)
CALL COMTRY(NOBS, NTRYS, TSMO, TRY)
DO71 = 1, NTRYS
CALL RUNLRC(NOBS, X, TSMO, W, NTRYS,MNWNSZ, TRYSPN,!, TRY)
7 CONTINUE
CALL COMPWT(NOBS, NTRYS,TRY)
CALL COMTRY(NOBS, NTRYS, SMOOTH, TRY)
WRITE(8,4) (SMOOTH(I),| = 1, NOBS)
4 FORMAT(2X,5(F12.6,2X))
STOP
END

'y

aoo00

SUBROUTINE COMPWT(NOBS, NTRYS, TRY)
DOUBLE PRECISION LAMBDA,TEMP,MIN, TRY(NOBS,NTRYS,9)
REAL INFIN,CEPS, MISVAL RESCAL WTPOW
INTEGER NOBS, NTRYS, NTMS, A
COMMON /CONSTS/ INFIN,CEPS,MISVAL, RESCAL,WTPOW
DO1J = 1, NOBS
MIN = INFIN
LAMBDA = 0.
NTMS = 0.
DO2! = 1, NTRYS
TEMP = TRY(J,1.6)
A = NOTMIS(TEMP, MISVAL)
IF(A.EQ.1)GO TO 3
GO TO 4
3 NTMS = NTMS + 1
LAMBDA = LAMBDA + TEMP
IF(TEMP.LT.MIN)MIN = TEMP
4 TEMP = TRY(J,1.4)
A = NOTMIS(TEMP,MISVAL)
IF(A.EQ.1)GO TO 5
GOTO6
5 NTMS = NTMS + 1
LAMBDA = LAMBDA + TEMP
IF(TEMP.LT.MIN)MIN = TEMP
6 TEMP = TRY(J,I.5)
A = NOTMIS(TEMP,MISVAL)
IF(A.EQ.1)GO TO 7
GO TO 2
7 NTMS = NTMS + 1
LAMBDA = LAMBDA + TEMP
IF(TEMP.LT.MIN)MIN = TEMP
2 CONTINUE
LAMBDA = LAMBDA/NTMS
LAMBDA = LAMBDA - MIN
IF(LAMBDA.GT.0.)LAMBDA = 1./(LAMBDA*RESCAL)
IF(MIN.LE.0.)MIN = CEPS

T
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DO 8| = 1, NTRYS
TRY(J,1,9) = WEIGHT(TRY(J.,6), MIN, LAMBDA.J,
TRY(J,1,7) = WEIGHT(TRY(J,1.4), MIN, LAMBDA.J,
TRY(J,1.8) = WEIGHT(TRY(J,I.5), MIN, LAMBDA.J,
CONTINUE
CONTINUE

AkKR

(oXeXe!

SUBROUTINE COMTRY(NOBS, NTRYS, SMOOTH, TRY)
DOUBLE PRECISION RSUM,WSUM,T,SMOOTH(NOBS),TRY(NOBS,NTRYS,9)
REAL CEPS,MISVAL
INTEGER NOBS, NTRYS, A
COMMON /CONSTS/ INFIN,CEPS,MISVAL,RESCAL WTPOW
DO1J = 1, NOBS
RSUM = 0.
WSUM = 0.
DO 21 = 1, NTRYS

T = TRY(J,1,3)

A = NOTMIS(T,MISVAL)

IF(A.EQ.1)THEN
RSUM = RSUM + TRY(J,1,9)*TRY(J,1,3)
WSUM = WSUM + TRY(J,,9)

ELSE
GO TO3

ENDIF

T = TRY(J.11)

A = NOTMIS(T,MISVAL)

IF(A.EQ.1)THEN
RSUM = RSUM + TRY(J,1,7)*TRY(J,1,1)
WSUM = WSUM + TRY(J,1,7)

ELSE
GO TO 4

ENDIF

T = TRY{J.1,2)

A = NOTMIS(T,MISVAL)

IF(A.EQ.1)THEN
RSUM = RSUM + TRY(J,,8)*TRY(J,1,2)
WSUM = WSUM + TRY(J,1,8)

ELSE
GOTO?2

ENDIF

CONTINUE
IF(WSUM.GE.CEPS)THEN

SMOOTH(J) = RSUM/WSUM

ELSE

SMOOTH(J) = MISVAL

ENDIF
CONTINUE

C-t-annnnn-nn-ﬁl.n-tnt----nnn--nn---l-n--nn---n--ntattnn

o

C-tnnnnnnnn:nnlttl--t-tnn.tn-nna.-ctt-lt------ﬁnn-nan-nn

»
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SUBROUTINE RUNLRC(NOBS, X, Y, W, NTRYS, MNWNSZ, TRYSPN, |, TRY)
DOUBLE PRECISION AT,BT,MEANRQ,YMEAN,Y2MEAN,
SLOPE,INTER X(NOBS),Y(NOBS) W(NOBS)

DOUBLE PRECISION XSUM,YSUM,X2SUM,Y2SUM,XYSUM,
WSUM,XVAR,XMEAN,X2MEAN, XYMEAN,EPS, TRY(NOBS,NTRYS,9)
REAL CEPS,MISVAL
INTEGER NOBS, NTRYS, JL, JR, TRYSPN(NTRYS), MNWNSZ,
RFLAG,CFLAG,LFLAG, I, JC
COMMON /CONSTS/ INFIN,CEPS,MISVAL, RESCAL WTPOW

JL = NOBS/4

JR = 3L

EPS = X(JR) - X(JL)

IF(EPS.LE.0.0.AND.JR.LT.NOBS)THEN

IF(JR.LT.NOBS)JR = JR + 1
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IFULGT.1)L = JL -1
X EPS = X(JR) -~ X(JL)
ELSE

GO TO 1
ENDIF
GO TO 2
1 CONTINUE
EPS = EPS*CEPS
EPS = EPS**2
IF(TRYSPN(I).LT.MNWNSZ2)TRYSPN(]) = MNWNSZ
XSUM = 0.
YSUM = 0.
WSUM = 0.
X2SUM = 0.
Y2SUM = 0.
XYSUM = 0.
KI = MNWNSZ - 1
DO4JR = 1, KI
CALL UPDATE(1, X{JR), Y{JR), W{JR), XSUM, YSUM,
. WSUM,X2SUM,Y2SUM, XYSUM)
TRY(JR,I,1) = MISVAL
4 TRY(JR,1,4) = MISVAL
JL = JR-TRYSPN(l) + 1
JC = JR - TRYSPN(1)/2
KT = NOBS - MNWNSZ + 1

6 IF(JL.GE.1)GO TO 7
LFLAG = 0
GO TO8
7 LFLAG = 1
8 IF(JC.GE.1.AND.JC.LE.NOBS)GO TO 9
CFLAG = 0
GO TO 10
9 CFLAG = 1
10 IF(JR.LE.NOBS)GO TO 11
RFLAG = 0
GO TO 12
11 RFLAG = 1
12 IF(RFLAG.EQ.1)GO TO 13
GO TO 14
13 CALL UPDATE(1, X(JR), Y(JR), W(JR), XSUM, YSUM,
. WSUM,X2SUM,Y2SUM, XYSUM)
14 XMEAN = XSUM/WSUM

X2ZMEAN = X2SUM/MWSUM
YMEAN = YSUM/WSUM
XYMEAN = XYSUM/WSUM
Y2MEAN = Y2SUM/WSUM
XVAR = X2MEAN - XMEAN**2
IF(XVAR.LE.EPS)THEN
SLOPE = 0.

ELSE

¢ SLOPE = (XYMEAN - XMEAN"YMEAN)'XVAR
END
INTER = YMEAN - SLOPE*XMEAN
MEANRQ = Y2MEAN -(2.*INTER*YMEAN)-

. (2.“SLOPE*XYMEAN) + (INTER**2) +
. (2."INTER*SLOPE*XMEAN) + (X2MEAN*SLOPE**2)
IF(LFLAG.EQ.1)GO TO 15
GO TO 16
15 AT =TRY(JL.1,3)

BT =TRY(JL..6)
CALL EVALFT(INTER,SLOPE, MEANRQ,JL W, X,Y,AT,BT.|, WSUM)
TRY(JL1.3)=AT

TRY(JL.I.6) = BT
16 IF(RFLAG.EQ.1)GO TO 17
GO TO 18
17 AT =TRY(JR,I,1)

BT =TRY(JR,1,4)

CALL EVALFT(INTER,SLOPE,MEANRQ,JR,W.X,Y AT,BT.|, WSUM)
TRY{JR,I,1)=AT

TRY(JR,1.4) = BT
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18 IF(CFLAG.EQ.1)GO TO 19
GO TO 20

19 AT =TRY(JC,,2)
BT =TRY{JC,],5)

CALL EVALFT(INTER,SLOPE,MEANRQ JC,W,X,Y AT,BT,LWSUM)
TRY(JC.I,2) =AT
TRY(JC,,5) =BT
20 IF(LFLAG.EQ.1)GO TO 21
GO TO 22
21 CALL UPDATE(0,X(JL),Y(JL),W(JL),XSUM,YSUM,
- WSUM,X25UM,Y2SUM,XYSUM)
22 JR = JR + 1
JL=JL + 1
JC=JC + 1
IFWL.LEKT)GO TO &
KL = JL
DO 23 JL = KL, NOBS
TRY(JL,1,3) = MISVAL
23 TRY(JL,I.6) = MISVAL
RETURN
END

AR L]

elele

INTEGER FUNCTION NOTMIS(AO,MISVAL)
_ DOUBLE PRECISION AO

REAL MISVAL
IF(AO.GT.MISVAL)GO TO 1
NOTMIS = 0

RETURN

1 NOTMIS = 1
RETURN
END

c... ............ aara AR X *

C-n-ut---:nn-ﬂ- A R o Kr kKRN

REAL FUNCTION WEIGHT(R,INTER2,SLOPE2,J,)
DOUBLE PRECISION R, TEMP2,INTER2,SLOPE2
REAL WTPOW,MISVAL
INTEGER A,J
COMMON /CONSTS/ INFIN,CEPS,MISVAL RESCAL WTPOW
A = NOTMIS(R,MISVAL)
IF(A.EQ.1)THEN
TEMP2 = SLOPE2*(R - INTER2)
IF(TEMP2.LE.0.)JTHEN
WEIGHT = 1.
ELSE
IF(TEMP2.LT.1.)THEN
WEIGHT = ((1.-TEMP2)**(INT(WTPOW)))*(
. s ;(5 1.-TEMP2)*~(WTPOW- INT(WTPOW)))

WEIGHT = 0.
ENDIF
ENDIF
ELSE
WEIGHT = 0.
ENDIF
RETURN
END

C----.--.--A-t----u-q--t-n--t-!ln--:.--n-nnn.n.n--n---nt-

C--.------.--n--nnnn---t--n-nnt!nn-----t-tnﬂlnnn------ntn

SUBROUTINE UPDATE(OP,A1,81,C1,XSUM,YSUM,WSUM,X2SUM,
*Y2SUM,XYSUM)
DOUBLE PRECISION XSUM,YSUM,WSUM,X2SUM,Y2SUM,XYSUM,A1,B1,C1
INTEGER OP
IF(OP.EQ.0)THEN
XSUM = XSUM - C1*A1
YSUM = YSUM - C1*B1
WSUM = WSUM - C1
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X2SUM = X2SUM - C1*A1**2
Y2SUM = Y2S5UM - C1*B1*2
XYSUM = XYSUM - C1*A1“Bt
ELSE
XSUM = XSUM + C1*A1
YSUM = YSUM + C1*B1
WSUM = WSUM + C1
X2SUM = X2SUM + C1*A1*=2
Y2SUM = Y25UM + C1*B1**2
XYSUM = XYSUM + C1*A1*B1
ENDIF
RETURN
END

ARRAA

SUBROUTINE EVALFT(A,B,R2,Jl,W,X,Y,TRYS, TRYR,|,WSUM)
DOUBLE PRECISION TRYS,TRYR,WSUM,A,B,R2,W{J1),X(JI),
*Y(J!),FIT,RES
INTEGER JI,!
FIT = A + B*X(Jl)
RES = Y(JI) - FIT
TRYS = FIT
TRYR = (WSUM*R2 - W(JI)*RES*RES)/(WSUM - W(J1))
RESURN
EN

C NRRARR anasa RARRARARARRR

aO00

C..- aan ARRANRARANARRANERAS A

SUBROUTINE SORTER(X,W,Y.N)
DOUBLE PRECISION X(N),W(N),Y(N),D(5000)
INTEGER N,KEY(5000)
DOS5i=1,N
5 KEY(l)=1
CALL SHSORT(X,KEY,N)
DO 1 I=1,N
1 D(1) = W(1)
DO21! .,
J=KEY(l)
2 W(l)=D(J)
DO 3 1=1,N
3 D(1)=Y(1)
DO41=1N
J=KEY(l)
4 Y(1)= D)
RETURN
END

C-------n-n-.n------n-n-n--nn-t-n...--n---------n----.-n--

C

C.---t-n-t---.----t--at--:-----.-n.--t-n--nn------n-.nnn-!

BLOCK DATA

COMMON /CONSTS/ INFIN,CEPS MISVAL,RESCAL WTPOW

REAL INFIN,CEPS MISVAL RESCAL WTPOW

DATA INFIN,CEPS ,MISVAL RESCAL WTPOW /1.0E30,1.0E-10,
*-1.0€E30,1.0,2.0/

END

3. SPTLIN VSAPLWS

The follc wing two APL functions are used in conjunction with the
two files listed above. They were developed by the author of this
thesis in order to plot the smoothed data/results. They are the main
APL functions within the APL workspace SPTLIN. The first APL
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function links the user of the smoothing program with GRAFSTAT and
gives a user familiar with GRAFSTAT the opportunity to proceed into
GRAFSTAT where a greater variety of graphic functions are available.

V ST RT;C

DUM«CMS 'CLRSCRN!

YTHE "ENTIRE DATA FILE THAT YOU WANTED SMOOTHED HAS
TRANSFERRED?

'T0 THIS WORKSPACE SO THAT YOU MAY BE ABLE TQO PLOT

'THE SMOOTHED AND UNSMOOTHED DATA.'!
'?HE UNSMOOTHED DATA IS IN THE VARIABLE WITH THE SANE

S
:THE‘ DATA FILE'THAT YOU HAVE YOQUR INPUT DATA IN.'

!

'DO YQU WISH TO GO INTQ APL QR CONTINUE?!

C"E'gTE’R 0 FOR APL OR 1 FOR CONTINUE'

-

+13+Cx8
RTA'I\},TOU EWILL BE SENT TO APL AFTER YOU HAVE READ THIS
TI'JE'*BﬁFTER YOU HAVE FINISHED WORKING IN APL AND WISH TO

'***E’NTE’R PLOTER**xx%xxNOTICE THAT PLOTER HAS ONLY ONE

t t
'NOW ENTER O AGAIN'
C<l

o=

tx
e

ln mn o mn Tan U~ Tam Lo o Ton VST o Ve T Yo o e o e b T e Y o Lo o T T
RN b 3 = P T 2 =3 =2 (DO N £ QW imN =

<G OWoONM VQFNPWN R OLIIL IR IRLItay I

e N Qe

*>C
PLOTER

The next APL function creates the APL variables to used in the APL
'"PLOT' screen. This plotting option is made available to the user
through the above APL function. The user can use this APL function
to do the plotting or the GRAFSTAT graphics functions. A user need
not fully understand how to use the GRAFSTAT plot screen ir order to
use this function. Several examples are shown with each of the queries

so that the user can see what the entry should look like.

v
PLOTER; €CO;DUM;PsSYsTI;TLiTP;XL3X03XSsXTsXY;XV3YL3Y03YS5Y
(11 Dumecms’ TCLRECAW
[2] YYOU HAVE ACTIVATED THE PLOTTING FUNCTION!
£3] 'IT IS ASSUMED THAT THE USER IS FAMILIAR WITH THE
GRAFSTAT PLOT FUN
[u] 'AND THE AXIS CONTROL FUNCTION'
gS%Lowr&éF YOU RECEIVE (MAKE) AN ERROR MESSAGE DO THE
(6] "1, ENSURE THAT VM READ IS DISPLAYED IN LOWER RIGHT
CORNER QF SCREEN!
(7] '2. PRESS THE ENTER KEY'
[8] '3, ENTER PAGE!
£9] 170 UNDERSCORE A 'LETTER HOLD THE APL/ALT KEY DOWN AND
PRESS THE LETTER
(10] 'THE PLOTTING FUNCTION WILL RESTART AT THE BEGINNING'
{11] 'THE PLOTTING FUNCTION CAN BE EXITED AT ANY INPUT
{ggqr BY ENTERING' '

>
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L?:DUM*CMS 'CLRSCRN'
'ENTER SCALE OF X-AXIS (IN QUOTES) OR P (IN QUOTES)
PREVIQUS SCALE'
'‘E.G. "'LIN'' OR '"'LIN XMIN XMAX'' OR ''p'' 1!

XS«

TYENTER SCALE OF Y-AXIS (IN QUOTES) OR P (IN QUOTES)
PREVIOUS SCALE

E G. '"'LIN'' OR '"'LIN YMIN YNAX'' QR ''pP'! !

S<N
TEIVTE’R THE PLOT HEADER (IN QUOTES) OR EMPTY QUOTES'
'E.G. "'TITLETY QR 'V 11 ¢
TI<N

DUM<CMS 'CLRSCRN!
TENTER X-AXIS LABEL (IN QUOTES) OR !
i% PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS

'E.G. ''LABEL'' QR 't 1! !

XLe

TENTER Y-AXIS LABEL (IN QUOTES) OR!

'g PAIR OF EMPTY QUOTES FOR NQO LABEL OR TQ USE AXIS

?E.G. "'LABLE'' QR ‘' 1! '
YL«
TDO YOU WANT TO RUN THIS PAGE?:!
égNgER 0 FOR NO OR 1 FOR YES!
*
DUM<CMS 'CLRSCRN!
SLI3+4x{(CO0=0)
L3: P+ 1 I 1

‘PLEASE WAIT RUNNING PAGE!

13] 'AT ANYTIME THAT YOU EXIT THE PLOTTING FUNCTION!
1ui 'YOU WILL BE IN THE GRAFSTAT WORKSPACE!
15 'IF YOU WISH TO RETURN TO CMS ENTER!
16] YOFF HOLD!
1
{19)] LB:'ENTER X VARIABLE(S) (ENCLOSED IN QUOTES), IF
ENTERING MORE THAN ONE VARIAB
Ezo] 'SEPARATE VARIABLES WITH SEMICOLON AND USE QUOTES'
21] 'E.G. '"'X''" OR ''X1;X2
Ezz] XV<E
23] DUOM<CMS 'CLRSCRN
(2] TYENTEKR Y VARIABLE(S) (ENCLOSED IN QUOTES AND MUST BE
OF SAME LENGTH A4S X)
ggg}caﬂﬁ$ ENTERING MORE THAN ONE VARIABLE, SEPARATE WITH
[26] 'AND REMEMBER TO USE QUOTES ENCLOSING ENTIRE STRING'
Egg% YE.g. Tyttt grR 'yl
[29] “TENTER A VECTOR INDICATING TYPE(S) OF PLOT; 0=SYM
ONLY; 1=LINE ONLY'
(30] 'E.G. 0O R 1 0OR 01 0RO0O0O0OR10O0R 11
[31] P<N
[32] 3>U(x/TP)>0)/L1
£33] '‘ENTER TYPE OF SYMBOL CORRESPONDING TO EACH SYMBOLS
ONLY PQOT (IN QUOTES)
4] 'E.G. ''.'!' QR '' . %x''" YOU CAN USE .x+x!
5] SY<N
6] >V(+/TP)=0)/LP
7] L1:'ENTER A VECTOR INDICATING TYPE(S) OF LINES; 1=SOLID
NE; 3=DASH INE
8] 'E.G. 1 OR 3 OR 1 3 OR ANY OTHER COMBINATION OR LINE
PES IN GCRAFSTAT!
] 7TL<N
] LP:TL<1
] +(TpTP)21)/L2
] SY<«
]
]

| W[ - |

3]
Q

o e e e i LD L s LD Lot o VYo Vo R~ Ty Vo Vs U P P P P T Ty T T e T oy T T |
X
(&)

OO OQUUOILUIQUIUIIUINE FQFE EEQFEEEFFFuRWONOLWWW

WONOMEWNROZOONOZNEFWNROVLOXINOUIEWNR OW

ST T L T L | T T L e e —
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RUN PAGESAM
TDO YOU WANT TQ EXIT THIS FUNCTI0N7'
'ENTER 0 FOR NO OR 1 FOR YES'

<8
$0c0=1)/1k
'DO_YOU' WANT TQ RESTART THIS FUNCTION?!
LENTER 0 FOR NO OR 1 FOR YES'
<
DOM<CHS | CLRSCRN'
_)
99 ONLY-THING LEFT TO DO IS THE AXIS CONTROL'
pLBi WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED
"ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT'
\1ST ELEMENT, 1(0): LINES AND SYNBOLS ARE™ (NOT) SHOWN

E
:2ND ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON
'3RD ELEMENT, 1(0): AXES, GRIDS, AND GRID LINES ARE

) SHOWN
'E. 1 O WILL SHOW EVERYTHING ON GRAPH EXCEPT .1XES
GRID LINES

TENTFR 4y ELEMENT VECTOR FOR AXES AND GRID CONTROL'
'1ST ELEMENT, X-AXIS: O Borrom, 2 IrgpP, OR 20 = AT

'2ND ELEMENT, Y-AXIS: 1 LEFT, 3 RIGHT, OR 21 AT

'3RD ELEMENT VERTICAL GRID LINES: 0=NO GRID,
TTED, OR 2sSOL

'L TH ELEMENT, HORIZON. GRID LINES: 0=NO GRID,
TTED OR 2 SOLI

'E. G 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND
D GRI@ LINES'

L8:'PLEASE WAIT RUNNING PAGE'

RUN PAGESAM

LZ:DUM<CMS 'CLRSCRN'

' ENTER X-AXIS TIC MARKS LOCATION VECTOR'

'OR_ENTER 0 FOR STANDARD TIC MARKS'

"OR ENTER 1 FOR NO TIC MARKS!

'E.G. 1 5 11 OR A VECTOR NAME OR 0 OR 1!

yb.8 11 WILL SHOW TIC MARKS AT X=1, X=5, AND X=11'
<\

TENTER X-AXIS SYMBOLS (IN QUOTES)!

'OR ENTER 0 WITHOUT %UOTES FOR STANDARD SYMBOLS'

N O
= x

[P T (W | |

'OR ENTER 1 WITHOUT QUOTES FOR NQ SYMBQLS'!
'E.G. ''197031871'* OR A VECTOR NAME OR O OR 1!

XY«
TENTER X-AXIS SYMBOLS LOCATIONS VECTOR!
S:OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO

'E.G. 6 18 OR A VECTOR NAME OR 0O'
'6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18! *

X0«

DOMN<CMS 'CLRSCREN!'

TENTER™ Y-AXIS TIC MARKS LOCATION VECTOR'

'OR ENTER 0 FOR STANDARD TIC MARKS!

'OR ENTER 1 FOR NO TIC MARKS!

'E.C. 1 01 0OR 4 VECTOR NAME OR 0 OR 1!

} 1NO 1 WILL SHOW TIC MARKS AT Y="1, Y=0, AND Y=1!
(—

TENTER Y-AXIS SYMBOLS (IN QUOTES)!

'OR ENTER 0 WITHOUT §UOTES FOR STANDARDLgYMBOLS'

'OR ENTER 1 WITHOUT QUOTES FOQR NO SYM
'E.G. ''LO MID HI'' OR VECTOR NAME OR 0 OR 1

YY<
TENTER Y-AXIS SYMBOLS LOCATIONS VECTOR!

PR R R R R R R R PR R R R R R AR R R R R R R R R R R (OO O OO OQW N WO I WO I W i 000000400 Z000MY00200000Q0000 NN SNINNINN
NRNNRNDNNRRRPRRPRRPRRARRROO0O00000COOWONOUMIFEFNMWONDTROOOVONTOQUINMIE WNIRLROLONOMEWNRFLO
MU EWNPRPOOVONOOFEFWNRIOMONOMEWN R OUILILILIL L INUIQLIQUY —Ld =t it i 4 Ld bl 0ttt L s g
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g%ﬁggLSJOR ENTER O FOR SYMBOLS AT DEFAULT LOCATIONS OR NO
E128% 'I.E. "1 0 1 OR VECTOR NAME OR Q!
E%%gj }0180 1 WILL SHOW LO AT Y= 1, MID AT Y=0, HI AT Y=1'
<
(131] TTHESE AXIS CONTROL ENTRIES WILL NOW BE RUN'
[132] RUN PAGEAX
{133)] TDO YOU WANT TO RERUN THE PLQOT INPUTS YQU ENTERED'
[134] ‘'BEFORE RUNNING THIS AXIS CONTROL FUNCTION?!
E135] 'ENTER 0 FOR NO OR 1 FOR YES'!
136] CO<08
{137] >(c0=1)/L6
[138] 'DO0 YOU WANT TQ DO ANQTHER AXIS CONTROL PAGE?'!
139] 'ENTER O FOR NO OR 1 FOR YES'
140] (CO<Q
1u1% >(c0=1)/L8
(1u2 'DO _YOU WANT TQ RESTART THE FUNCTIQON?'!
[143] LE:'IF YOU DO NOT YOU WILL EXIT THIS FUNCTION'
55324 t*IF YOU EXIT THIS FUNCTION AND WANT TO RETAIN THIS
E&g§] tUSE THE KEEP FUNCTION AND THEN YOU CAN RETURN TO
(146] 'BY ENTERING )QFF _HOLD'
5%;g% E&%giyou WANT TO RETURN TO CMS, SIMPLY ENTER )OFF HOLD
(148] 'ENTER 0 FOR EXIT OR 1 FOR RESTART'
[149] CO<N
[150] >(c0=1)/LB
[181] 10
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APPENDIX C
APL FUNCTIONS

1. BRANDOM NUMBER GENERATOR

The following GRAFSTAT [Ref. 12] APL function generates Normal
random deviates and was used to produce the N(0,1) noise added to
basic functions used in Chapter IV.

V Z<N NORRAND P;S;I;T

1) P«24+P,

[2] Ze(N)pO

3] I«

(4] F10: T<~2 UNIRAND 0.5 0.5

[5] T« (2xT)-1

(6] Se(TL1]*x2)+T[2]%2

[7] »>F10x1521

(8] Z[I]+P51]+P[2]x(T[1]X(( 2x®S)+S)%x0.5)
(9] -V>F10><1 I<I )

The following GRAFSTAT [Ref. 12] APL function generates uniform
random numbers which are used in the above APL function,
NORRAND.

V R<N UNIRAND
(1] §+(B[1] B[2J)+((N71oooooooo)xzx3[2]) 100000000

2. EQUAL-WEIGHT MOVING AVERAGE SMOOTHER

The following GRAFSTAT [Ref. 12] APL function is the Moving
Average smoother used to generate the associated smooth plots in
Chapter IV.

V Y<M MQVAV X
(1] %’*(Mp%M) MAV X

The following GRAFSTAT [Ref. 12] APL function computes weights
corresponding to the data values within the neighborhood W and does
the weighted averaging within W. These values are the smoothed
values which are transferred to the above APL function.

% U<—W MAV X;D3d;L

(1] +>3-(1=pp W)Av 2 =ppX
(2] +3+ L>1)A(Lépw)31 DépX
£3) Ne!'NQ GO. Uet?

(4] D[l «D[1]1+1-




[5% Ue«DpJ<
[6 U+U+W[J6J+1JXDpJ * X
(7] gst>J

3. COSINE-WEIGHTED MOVING AVERAGE SMOOTHER

The following APL function computes the cosine weights for the
cosine-weighted moving average [Ref. 14: p. 394] with window size R,
i.e. length:

V WeCW R
(11 A WEIGHTS FOR A COSINE-WEIGHTED MOVING AVERAGE OF
LENGTH R
(2] g+(1-2o(1R)xo2+H+1)+R+1

The following APL function is the Cosine Weighted Moving Average
algorithm. It is part of the time series APL workspace TSERIES devel-
oped at the Naval Postgraduate School.

V S<WW RUNSMOOTH X;:L; sM; LW IR IX IDX
a RUNNING SMOOTH OF X WITﬁ WEIGH Ts
R W MUST BE ODD VECTOR THAT ADDS UP TO
A WW HAS AS 1ST ELEMENT THE ADVANCE STEP L FOR THE
OTHING WINDOW
A RESULT IS 2-ROW MATRIX WITH SMOOTH VALUES (ROW 1) AND
ICES (ROW 2)
L<l /1,14WW
W+1+WW
LW<pW
IDX«LO 5x[L
>((IDXzLW+ 2)A(1 +/W))/LO5S
‘WEIGHTS W IN RUNSMQOOTH NOT ODD OR DONT ADD UP TO 1.
R TERMINATED'

L1o~+(M<I+I+L)/L20
S<S,+/WxX[I[+R)
Ix<lx |, T+IDX
+L1

L2
o] RE’TURN SMOOTHED VALUES AND THEIR INDICES IN ROW 2
€+(2,ps)pS.IX

Fon Ui Ve Vs U Vs V¥ Vs Vo Vi Voo P T P 1 o T ' i Vo Vo Ve VAN e Y, Yo Ve P
NRONRNRORRPRPRRRPRP R EOROONONSE EZEWNP
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APPENDIX D
DATA SETS

This appendix contains in tabular form the data sets used in this
thesis. The first table shows the Daily Sea-Surface Temperature in
degrees Centigrade collected at Granite Canyon, just south of Point
Sur, California. This data set used in Figures 1.1 and 1.2 which were
illustrations of a scatterplot and a smooth curve through the scatter-
plot. The cther three tables contain the Test Data sets used in the
evaluation of the Supersmoother and the Split Linear Fit smoothers, i.e.
Test Set One, Test Set Two, and Test Set Three.
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E{_ TABLE 19
& DAILY SEA-SURFACE TEMPERATURE IN DEGREE CENTIGRADE
AT GRANITE CANYON, CALIFORNIA
L.
::.. TEMP. DATE TEMP. DATE TEMP. DATE TEMP. DATE TEMP. DATE TEMP. DATE
; 08.8 1060 08.8 1111 097 1162 106 1213 13.7 1264 13.2 1315

08.5 1061 08.5 1112 099 1163 107 1214 14.0 1265 124 1316
085 1062 093 1113 101 1164 10.7 1215 144 1266 125 1317
09.0 1063 09.1 1114 098 1165 108 1216 140 1267 12.0 1318
08.8 1064 090 1115 098 1166 108 1217 148 1268 114 1319
08.3 1065 09.0 1116 095 1167 112 1218 140 1269 108 1320
08.9 1066 096 1117 098 1168 115 1219 13.8 1270 11.3 132
09.2 1067 090 1118 098 1169 11.0 1220 13.1 127%¢ 111 1322
09.2 1068 09.0 1119 102 {170 113 1221 127 1272 113 1323
08.9 1069 08.3 1120 105 1171 113 1222 128 1273 11.9 1324
09.8 1070 09.5 1121 099 1172 108 1223 118 1274 119 1325
09.8 1071 108 1122 099 1173 108 1224 116 1275 121 1326
098 1072 108 1123 10.0 1174 110 1225 11.8 1276 11.7 1327
099 1073 10.6 1124 098 1175 112 1226 11.8 1277 11.7 1328
096 1074 104 1125 09.7 1176 118 1227 122 1278 11.5 1329
09.5 1075 09.8 1126 102 1177 121 1228 119 1279 11.0 1330
09.6 1076 09.8 1127 089 1178 116 1229 112 1280 11.5 1331
09.3 1077 103 1128 100 1179 117 1230 113 1281 115 1332
0.8 1078 108 1129 100 1180 119 1231 115 1282 119 1333
104 1079 108 1130 09.9 1181 123 1232 11.0 1283 11.2 1334
109 1080 10.0 1131 099 1182 125 1233 10.5 1284 10.8 1335
10.8 1081 100 1132 09.8 1183 128 1234 104 1285 112 1336
100 1082 100 1133 098 1184 118 1235 110 1286 10.8 1337
10.0 1083 09.7 1134 099 1185 11.9 1236 11.2 1287 109 1338
10.0 1084 100 1135 09.5 1186 140 1237 111 1288 10.7 1339
11.0 1085 096 1136 099 1187 139 1238 118 1289 10.0 1340
10.3 1086 089 1137 099 1183 134 1238 126 1290 0396 1341
09.7 1087 089 1138 104 1189 13.0 1240 132 1291 09.2 1342
09.9 1088 088 1139 099 1180 132 1241 140 1292 096 1343
098 1088 09.2 1140 105 1191 12.0 1242 139 1293 08.7 1344
08.8 1090 089 1141 102 1192 120 1243 122 1284 (9.8 134§
08.9 1091 09.2 1142 100 1193 120 1244 121 1295 094 1346
09.1 1092 094 1143 09.2 1194 119 1245 118 1286 098 1347
09.3 1093 104 1144 095 1185 106 1246 113 1287 (9.8 1348
09.0 1094 100 1145 098 1196 105 1247 113 1298 09.7 1348
08.3 1095 098 1146 100 1197 126 1248 115 1299 09.8 1350
09.6 1096 10.1 1147 112 1198 125 1249 10.7 1300 08.5 1351
09.8 1097 102 1148 11.2 1188 111 1250 099 1301 10.0 1352
09.8 1098 100 1143 117 1200 108 1251 095 1302 099 1353
09.8 1099 093 1150 11.8 1201 11.0 1252 100 1303 099 1354
100 1100 092 1151 112 1202 110 1253 10.8 1304 10.0 1355
09.8 1101 088 1152 112 1203 103 1254 096 1305 106 1356
090 1102 090 1183 112 1204 112 1256 103 1306 10.7 1357
09.3 1103 092 1154 112 1205 117 1256 108 1307 11.0 1358
109 1104 094 1155 108 1206 120 1257 110 1308 108 1359
09.7 1105 092 1156 109 1207 150 1258 11.0 1309 105 1360
09.0 1106 092 1157 109 1208 158 1289 115 1310 108 1361
09.4 1107 094 1158 106 1209 145 1260 122 1311 10.7 1362
09.0 1108 095 1159 104 1210 13.3 1261 112 1312 10.7 1363
08.1 1109 095 1160 10.3 1211 14.0 1262 124 1313 10.7 1364
09.2 1110 087 116% 114 1212 138 1263 118 1314 107 1365
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X Y

01 -0.5021245
02 -2.2706658
03 1.2848535
04 0.7868391
05 0.2750802
06 0.5916070
07 -0.4165126
08 2.0161424
09 0.4190598
10 2.1970718
11 0.7040685
12 1.3516733
13 -0.8261715
14 -0.1411653
15 1.8459821
16 0.0010230
17 1.2573502
18 0.3599704
19 0.6244237
20 -0.5493385
21 -0.4304499
22 1.8645709
23 0.8751194
24 0.1610555
25 0.2348275
26 1.9017348
27 1.0237749
28 1.6334782
29 1.5566808
30 1.9562180
31 1.6404860
32 -0.0613807
33 1.6950412
34 2.4851618
35 2.1286416
36 -0.9374542
37 1.2062176
38 1.1970600
39 1.8779879
40 1.0888278
41 1.6379587
42 3.2865109
43 2.5676486
44 2.0281008
45 0.8765109
46 1.7695006
47 2.0278913
48 1.3629063
49 1.6232943
50 2.4152275

TABLE 20
TEST SET ONE

Y X Y
3.5978136 101 3.8639735
-0.3642989 102 4.6424739
1.0218046 103 3.9925571
3.2826479 104 4.7141715
2.7816672 105 3.1026557
1.9686457 106  3.5086986
2.6941914 107 5.6847319
1.3421858 108  3.6997858
1.3385338 109  4.5971487
2.7176880 110  2.8131531
3.8561078 111 4.038515”
3.2294325 112 3.7093077
2.0122998 113 4.2573194
3.4452995 114  5.5364895
2.3519064 115 5.5778150
1.9137510 116  5.8100211
2.2349597 117 4.8393108
2.1070889 118  5.2185209
2.56508559 118 3.7046249
3.3621478 120  4.3492568
1.7760771 121 6.1103783
3.2315888 122 5.7786937
4.0529999 123 5.3587051
3.1099944 124  3.7126557
3.7031440 125 5.3246669
2.9875884 126  5.4300705
5.0984962 127 4.6748617
4.0441594 128  5.4123148
1.3458853 129  7.7259102
3.2349733 130 4.7421844
1.4321380 131 3.6291729
4.3081925 132 2.6104761
3.7146003 133 4.5603033
3.9984056 134 4.6852791
4.2742129 135 4.2283128
5.1924022 136  7.4729300
3.1599492 137  6.4484810
3.3825862 138 6.1902920
4.1757696 139  5.9801460
4.5778941 140  2.7272488
2.5246523 141 7.3258741
3.1299786 142 5.7079245
3.7588849 143  4.8179694
1.2771573 144 3.7067425
4.9586547 145 5.8890863
2.8137205 146  7.9270991
5.0334870 147 6.2451185
3.1335435 148 6.7661055
4.5948086 149 57754624
4.8204097 150 7.0307144

X

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
180
191
192
193
194
195
196
197
198
199
200

Y

4.5123774
7.0449390
6.6461625
5.9755457
6.3987827
7.8304268
6.3121917
7.2091639
5.0608475
7.5825731
8.2574717
5.8956979
5.5093262
5.5895017
7.2911596
5.8813818
6.5830282
5.3130510
7.7908127
6.0401256
7.7141272
7.6411270
6.7540765
7.2609074
6.6775327
6.6715890
8.2278953
7.1614303
6.0619503
8.7667237
6.1915765
7.7027237
6.4755850
7.0483700
7.7978105
8.4897860
7.1392044
7.8562970
7.3386392
7.6166495
6.4476388
7.5483537
9.2075244
6.9231787
6.4990181
9.4141318
9.0460399
8.7064297
6.4983612
9.5544659
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TABLE 21
TEST SET TWO

X Y X Y X Y X Y

01 0.4570756 51 1.1056374 101 -0.7988832 151  -0.5570467
02 -1.3538641 §2 -2.9317810 102 -0.0285995 152 1.9443678
03 2.1577621 53 -1.6202036 103 -0.6857874 163  1.5128773
04 1.6140663 54 0.5669487 104  0.0294491 154  0.8079680
05 1.0551468 56 -0.0068339 105 -1.5876051 1585  1.1953248
06 1.3229449 56 -0.8917159 106 -1.1863163 156  2.5894945
07 0.2645429 §7 -0.2370383 107  0.9856908 157  1.0321866
08 2.6453778 58 -1.6588701 108 -1.0026112 158  1.8884863
09 0.9949566 §9 -1.7312588 108 -0.1079922 159  -0.3021013
10 2.7181328 60 -0.4197057 110  -1.8941798 160  2.1757581
11 1.1688202 61 0.7522926 111 -0.6705179 161  2.8052014
12 1.7586682 62 -0.0335823 112 -1.0009952 162  0.3963923
13 -0.5783523 63 -1.3206523 113 -0.4538849 163  -0.0385836
14 0.1460898 64 0.0497107 114 0.8246897 164 0.0014325
15 2.0713177 65 -1.1049823 115 0.8656625 165  1.6413922
16 0.1631187 66 -1.6030669 116  1.0976953 166  0.1783960
17 1.3549229 67 -1.3403846 117 0.1269276 167  0.8253250
18 0.3917761 68 -1.5253494 118 0.5071318 168  -0.5008452
19 0.5892597 69 -1.1372168 119 -1.0077820 169  1.9182740
20 -0.6526318 70 -0.3800745 120 -0.3632442 170 0.1085231
21 -0.6029871 71 -2.0187875 121 1.3976432 171 1.7230700
22 1.6217221 72 -0.6143904 122 1.0655210 172 1.5882570
23 0.5609396 73 0.1574513 123 0.6448279 173 0.6380705
24 -0.2254246 74 -0.8335629 124 -1.0022558 174  1.0804791
25 -0.2248702 75 -0.2868485 125 0.6083290 176 0.4314349
26 1.3679551 76 -1.0472555 126 0.7118525 176  0.3586158
27 0.4151033 77 1.0203924 127 -0.0457512 177  1.8468834
28 0.9491606 78 -0.0756075 128 0.6837321 178  0.7112616
29 0.7960204 79 -2.8138453 129  2.9987233 179 -0.4584467
30 1.1185767 80 -0.9633214 130 0.0107011 180  2.1750750
31 0.7252823 81 -2.8030239 131 -1.1073564 181  -0.4722970
32 -1.0546655 82 0.0377556 132 -2.1318047 182  0.9657036
33 0.6232166 83 .0.5895273 133  -0.1887889 183  -0.3354497
34 1.3344005 84 -0.3368381 134 -0.0714380 184  0.1625056
35 0.8986088 85 -0.0925853 135 -0.5369943 185  0.8363578
36 -2.2470305 86 0.7965962 136 2.6980175 186  1.4520438
37 -0.1831108 87 -1.2633354 137  1.6628992 187  0.0245292
38 -0.2721655 88 -1.0666680 138 1.3929299 188  0.6641043
39 0.3287841 89 -0.2979676 139 1.1698476 189  0.0684045
40 -0.5403718 90 0.0811356 140 -2.0971853 180  0.2679094
41 -0.0711898 91 -1.9936927 141 2.4860636 191 -0.8800088
42 1.4975242 82 -1.4085479 142 0.8514574 192 0.0414590
43 0.6989979 93 -0.7974495 143 -0.0564717 193 1.6211055
44 0.0800240 94 .3.2976455 144 -1.1870254 194  -0.7429779
45 -1.1506912 95 0.3676870 145 0.9746058 195  -1.2470265
46 -0.3364633 96 -1.7921467 146  2.99048%4 196  1.5881130
47 -0.15640838 97  0.4139455 147 1.2849344 197  1.1400245
48 -0.8992433 98 -1.4984893 148  1.7808755 188  0.7204593
49 -0.7161574 99 -0.0485762 149  0.763691 199 -1.5674586
50 -0.0009194 100 0.1667661 150 1.8908847 200 1.4089659
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X

01
02
03
04
05
06
07
08
09
10
1
12
13
14
15

Y

0.5178755
-1.2306658
2.3449535
1.8668391
1.3750802
1.7116070
0.7234874
3.1761424
1.5990598
3.3970718
1.8240685
2.5916733
0.3338285
1.1388347
3.1459821
1.3210230
2.5973502
1.7199704
2.0044237
0.8506615
0.9895501
3.3045709
2.3351194
1.6410555
1.7348275
3.4217348
2.5637749
3.1934782
3.1366808
3.5562190
3.2604860
1.5786193
3.3550412
41651618
3.8286416
0.7825458
2.9462176
2.9570600
3.6579879
2.8888278
3.4579587
5.1265109
4.4276486
3.9081008
2.7765109
3.6895006
3.9678913
3.3229063
3.6032943
4.4152275

TABLE 22
TEST SET THREE

Y

5.4778136
1.3957011
2.6618046
4.8026479
4.1816672
3.2486457
3.8541914
2.3821858
2.2585338
3.5176880
4.6361078
3.7894325
2.4522998
3.7652995
2.5519064
1.8937510
2.1948597
1.9470889
2.2708559
2.9621478
1.2560771
2.5915889
3.2929999
2.2299944
2.7031440
1.8675884
3.8584862
2.6841594
-0.1341147
1.6349733
-0.2878620
24681925
1.7546003
1.8194056
2.0742129
2.8724022
0.7199492
0.8225862
1.4957696
1.7778941
-0.3953477
0.0899786
0.5998849
-2.0028427
1.5586547
-0.7062795
1.3934870
-0.6264565
0.7148086
0.8204097

X

101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Y

-0.1760265
0.5704739
-0.1114429
0.5781715
-1.0653443
-0.6913014
1.4527318
-0.5642142
0.3011487
-1.5148469
-0.3214848
-0.6826923
-0.1666806
1.0804895
1.0898150
1.2900211
0.2873109
0.6355209
-0.9113751
-0.2987432
1.4303783
1.0666937
0.6147051
-1.0633443
0.5166669
0.5800705
-0.1971383
0.5083149
2.7899102
-0.2258156
-1.3708271
-2.4215239
-0.5036967
-0.4107209
-0.8996872
2.3129300
1.2564810
0.9662920
0.7241460
-2.5607512
2.0058741
0.3559245
-0.5660306
-1.7092575
0.4410863
2.4470991
0.7331185
1.2221055
0.1994624
1.4227144

X

151
152
153
154
155
156
187
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
185
196
197
188
199
200

Y

-1.1356226
1.3569380
0.9181625
0.2075457
0.5807827
1.9824268
0.4241917
1.2811639

-0.9071525
1.5745731
2.2094717

-0.1923021

-0.6186738

-0.5684983
1.0831596

-0.3666182
0.2950282

-1.0149490
1.4228127

-0.3678744
1.2661272
1.15831270
0.2260765
0.6928074
0.0695327
0.0235890
1.5398953
0.4334303

-0.7060487
1.9587237

-0.6564235
0.8147237

-0.4524144
0.0803703
0.7898105
1.4417860
0.0512044
0.7282970
0.1706392
0.4086495

-0.8003612
0.2603537
1.8795244

-0.4448213

-0.9089819
1.9661318
1.5580399
1.1784297

-1.0696388
1.9464659
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APPENDIX E
SAMPLE SESSION USING SUPSMO PROGRAM

The following is a computer session showing the interaction between
the smoothing program SUPSMO and a user. The steps necessary to
run the smoothing program SPTLIN are very similar to those in this
session. It should be remembered that SPTLIN requires a terminal

which can »- ess 2M of computer storage memory.
supsmo

U.g?%GHZéIyEE INITIATED AN ALGORITHM TO SMOOTH A SET OF DATA
ALGORITHM "SUPER SMOOTHER" DEVELCPED BY FRIEDMAN AND
STUETZLE OF

STANFORD UNIVERSITY DEPT. OF STATISTICS

IF GRAPHICS WILL NOT BE USED DEFINE STORAGE AS 102uK
BY ENTERING 'DEF STOR 102uK!

FOLLOWED BY 'I CMS',

THEN BY 'SUPSMNO'!

DO YQU WISH TQ CONTINUE?

ENTER Y FOR YES O.. ANY OTHER KEY TO EXIT:

Y

IN ORDER TO USE THIS ALGORITHM YOU MNUST HAVE ON HAND THE
FOLLOWING:

1. FILENAME OF DATA FILE (FILETYPE DATA) WITH DATA TO BE
SMOOTHED

T%. IF DATA POINTS ARE NOT IN CHRONOLOGICAL ORDER, YOU NEED

DE%ZE A FILE (FILETYPE ORDER) WITH INDICES CORRESPONDING TO
POINTS INDICATING THE ORDER OF THE DATA POINTS.

W%jT£5$ENAME OF DATA FILE WHERE SMOOTHED OQUTPUT WILL BE
OR IF YOU WANT TQ WRITE QUTPUT INTQ APL HAVE ON HAND
THE VARIABLE AND WORKSPACE NAMES THAT WILL STORE THE

oUTPUT.

S}z IF YQU WANT TO SMOOTH THE DATA USING ONLY ONE WINDOW
HAVE ON HAND THE DECIMAL FRACTION OF THE DATA TO BE USED.
5. IF YOU WANT TO SMOOTH THE DATA USING THREE WINDOW SIZES

UgégE ON HAND THE THREE DECIMAL FRACTIONS OF THE DATA TO BE

DO YOU WISH TO CONTINUE?
ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
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.'_\ :\ ' Y

{ ‘
E.a ENTER FILENAME OF FILE WHICH CONTAINS THE DATA TO BE
- SMOOTHED .

water

ARE DATA PQINTS TQ BE SMOOTHED IN CHRONOLOGICAL ORDER?
ENTER Y FOR YES OR N FOR NO:

Y

THE DATA YOQU WANT TQ SMQOTH IS IN WATER DATA i
WHERE DO YQU WANT T0 WRITE THE SMQOTHED QUTPUT? CMS OR APL?

R YOU CAN _PLOT THE SMOOTHED QUTPUT IF YQU ARE LOGGED ON

e SéORﬂ%%MINAL THAT CAN ACCESS GRAFSTAT, I.E. HAVE 2M OF

10T

S BUT THE QUTPUT MUST BE STORED IN AN APL VARIABLE

ENTER APL OR CMS:

apl

el NOT USING THE NAME OF THE FILE WITH THE INPUT DATA, WATER
T Oggggg THE NAME OF THE APL VARIABLE THAT WILL STORE THE

) |
e smuf ig53 ‘
A DO _YOU WANT TO PLOT THE OUTPUT?
e ENTER Y FOR YES OR N FOR NO:
¥ 1
- CAN YOU ACCESS 2M OF STORAGE ON THIS DISK (TERMINAL)?
N ENTER Y FOR YES OR N FOR NO:
o '\.'_‘\.:
." : Y
A !
e PLEASE READ THE FOLLOWING INSTRUCTIONS VERY CAREFULLY
N ARE YOU READY T( START THE SUPER SMOOTHING PROGRAM?
o ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
A
Lo y
i xxxx*PLEASE  WAIT THE SMOOTHING PROGRAM IS  BEING
AN, COMPILED % % % % % % % % % %
S
nt VS FORTRAN COMPILER ENTERED. 16:11:30
o

! **MAIN** END OF COMPILATION 1 k%%
R **xSUPSMU%* END OF COMPILATION 2 sk
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**SMOQTH*x% END OF COMPILATION 3 *x%kkx%x%
**SORTER**x END OF COMPILATION U4 *¥k%%x%

**BLKDT4%+x* END OF COMPILATION 5 *x¥kik¥xx
VS FORTRAN COMPILER EXITED. 16:11:36

LOADED % % % % % % % % % % % % % % & % %
EXECUTION BEGINS
VALUE

671

ARE THE INPUT DATA PQINTS IN CHRONOLOGICAL ORDER?
ENTER 0 FOR NO OR 1 FOR YES

ENTER 1.0 IF YQU DESIRE TO USE ONLY ONE SPAN VALUE
ENTER 0.0 IF YOU DESIRE TQO USE THREE SPAN VALUES

0.0

% ENTER THE LOWEST SPAN VALUE:
S FRACTION OF 671 I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0

0.00745

ENTER THE MIDDLE SPAN VALUE:
S FRACTION OF 671 I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0

J 0.016393

b, - ENTER THE HIGHEST SPAN VALUE:
c FRACTION OF 671 I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0

0.0175

IF ONE QF THE SPAN VALUES IS SMALL

I.E. RESULTS IN A SMALL WINDOW SIZE (10 OR LESS)
YOU MAY WISH TQ ADJUST THE ROBUSTNESS

BY ENTERING A REAL NUMBER GT 0.0 BUT LT 10.0

< OR FOR NO ROBUST ADJUSTMENT ENTER 0.0

ENTER YOUR CHOICE

R
L I

.
MISAR

=i 0.0

¥3 *xxxx PLEASE WAIT SMOOTHING PROGRAM NOW RUNNING %% %
v **x*PLEASE WAIT, LINKING TO GRAFSTAT %%k %k ¥k kkkkkkk*k
199

g 155

Y

i

............

**xx**PLEASE WAIT SMOOTHING PROGRAM IS BEING

ENTER THE NUMBER OF DATA POINTS TO BE SMOOTHED--- INTEGER

N R S T R AL
o ‘,--“ ~~_.'~-h‘--’._‘1.." ...\:-'\«_




CLEAR WS

SAVED 06:26:45 09/01/85

WSSIZE IS 1188956

CMS MATRIX IS NOT RECTANGULAR. ROW ONE HAS 5 ELEMENTS
ROW 135 HAS 1 ELEMENT(S

INFORMATION TRANSFER HAS STOPPED AT THIS LINE

16:12:42 09/0u4/85 SUPSMO

SAVED 15:18:53 05/09/85

WSSIZE IS 1188956

3%?%?655 THE 4/01/85 RELEASE (¥ GRAFSTAT. IT RUNS ON THE
Cg%T§%5E3278/79. CONTROL VECTORS FROM EARLIER RELEASES WILL
TO RUN. IF YOU )COPY RATHER THAN )LOAD THIS WORKSPACE YOU

NusT

EXECUTE THE FUNCTIONL TENI BEFORE STARTING. THE NEXT
RELEASE IS

SCHEDULED FOR 9/85.

TO BEGIN, TYPE: START
FOR MORE INFORMATION, TYPE: DESCRIBE

NOT COPIED: RCODE GET XBLANKS VCAT
SAVED 16:12:42°09/0u4/8

ngﬁg%gIRE ‘DATA “FILE THAT YOU WANTED SMOOTHED HAS BEEN
TQ0 THIS WORKSPACE SO THAT YOU MAY BE ABLE TO PLOT BOTH

THE SMOQTHED AND UNSMQOTHED DATA.

THE UNSMOOTHED DATA IS IN THE VARIABLE WITH THE SAME NAME

S
THE DATA FILE THAT YOU HAVE YOUR INPUT DATA IN.

DO YOU WISH TO GO INTQ APL OR _CONTINUE?
ENTER 0 FOR APL OR 1 FOR CONTINUE QO :

1

YOU HAVE ACTIVATED THE PLOTTING FUNCTION
PigTIg ASSUMED THAT THE USER IS FAMILIAR WITH THE GRAFSTAT
AND THE AXIS CONTROL FUNCTIQN
IF YQU RECEIVE (MAKE) AN ERROR MESSAGE DO THE FQLLOWING
0} SnggURE THAT VM READ IS DISPLAYED IN LOWER RIGHT CORNER
2. PRESS THE ENTER KEY

3. ENTER G
ng ggg%ggCORE A" LETTER HOLD THE APL/ALT KEY DOWN AND PRESS
THE PLOTTING FUNCTION WILL RESTART AT THE BEGINNING
EﬁgngﬁgTTING FUNCTION CAN BE EXITED AT ANY INPUT POINT BY

>
AT ANYTIME THAT YQU EXIT THE PLOTTING FUNCTION
YOU WILL BE IN THE GRAFSTAT WORKSPACE
IF YOU WISH TQ RETURN TO CMS ENTER
JOFF HOLD
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ENTER X VARIABLE'(S) (ENCLOSED IN QUOTES), IF ENTERING MORE
THAN ONE VARIABLE

A SEPARATE VARIABLES WITH SEMICOLON AND USE QUOTES
{ E.G. 'X' OR 'X13X2' W

L t( 670)+59"

N ENTER Y VARIABLE(S) (ENCLOSED IN QUOTES AND MUST BE OF SAME
g t LENGTH AS X

IF ENTERING MORE THAN ONE VARIABLE, SEPARATE WITH SEMICOLON

S 4ND REMENBER TQ USE QUOTES ENCLOSING ENTIRE STRING
; E.G. "Y' OR 'Y¥1;Y2

'670 WATER;SMUFIGS3!

ENTER A VECTOR INDICATING TYPE(S) OF PLOT; 0=SYM ONLY;
3 1=LINE ONLY

3 E.GC. 0O OR1 0R0O10R00O0OR100R11H8:

-‘ -; \l)

01

o> A

ENTER TYPE OF SYMBOL CORRESPONDING TO EACH SYMBOLS ONLY
PLOT (IN QUOTES)
E.G. OR '.%x' YOU CAN USE .x+ 0 :

- e o
s

-:' l.l
%

BEgggg fbm%fCTOR INDICATING TYPE(S) OF LINES; 1=SOLID LINE;
b OR 3 OR 1 3 OR ANY OTHER COMBINATION OR LINE TYPES
& | v Sharstar u %
|- 1
) ENTER SCALE OF X-AXIS (IN QUOTES) OR P (IN QUOTES) FOR
X PREVIOUS SCALE
2 E.G. 'LIN' OR 'LIN XMIN XMAX' OR 'P' § :
- '"LIN™ .1 735!

ENTER SCALE OF Y-AXIS (IN QUOTES) OR P (IN QUOTES) FOR
PREVIOUS SCALE
E.G. 'LIN' OR 'LIN YMIN YMAX' OR 'P' N :
'LIN 8 17!

: ENTER THE PLOT HEADER (IN QUOTES) OR EMPTY QUOTES
. E.G. 'TITLE' OR g
- ' SMOQTHING WITH SUPERSMOOTHER, ALPHA= 0.0~ SPAN(S)=
: 0.00745,°0.016393,
# 157
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ENTER X-AXIS LABEL (IN QUOTES) OR
A PAIR QF EMNPTY QUOTES OR NO LABEL OR TO USE AXIS CONTROL
E.G. 'LABEL' OR T A

'JULIAN CALENDAR DATE'

ENTER Y-AXIS LABEL (IN QUQOTES) OR
A PAIR QF EMPTY QUOTES OR NO LABEL OR TO USE AXIS CONTROL
E.G. '"LABLE' OR 'R

'TEMPERATURE IN DEGREES CENT.'

DO YOU WANT IO RUN THIS PAGE?
ENTER 0 FOR NO OR 1 FOR YES Q0 :

0

DO YOU WANT TO EXIT THIS FUNCTION?
ENTER C FOR NO OR 1 FOR YES

N :
0

DO YOU WANT TQO RESTART THIS FUNCTION’
ENTER 0 FOR NO OR 1 FOR YES N

0

THE ONLY THING LEFT TO DQ IS THE AXIS CONTROL
WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED
CONSTRUCTING

ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT
SésgmgLEMENT 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN ON
2ND ELEMENT 1(0): HEADER AND AXES ARE (NOT) SHOWN ON

SSSDNELEMENT 1(0): AXES, GRIDS, AND GRID LINES ARE (NOT)
G 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT AXES AND

GRID LINES y
110

ENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL

1ST ELEMENT, X-AXIS = BOTTOM 2 rop, QR 20 = AT Y=0
2ND ELEMENT, Y-AXIS: 1 = LE 3 = RIGHT OR 21 AT X=0
2g§3L?gEMENT VERTICAL GRID LfNES‘ =NO GRID, 1= DOTTED OR
GWTH ELEMENT, HORIZON. GRID LINES: 0=NO GRID, 1=DOTTED, OR

2=SOLID
E.G. 2 1 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND SOLID
GRID LINES N :

0100

PLEASE WAIT RUNNING PAGE
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ENTER X-AXIS TIC MARKS LOCATION VECTOR
OR ENTER 0 FOR STANDARD TIC MARKS

OR ENTER 1 FOR NO _TIC MARKS

E.G. 1 5 11 OR A VECTOR NAME OR 0 OR 1

1 S 11 WILL SHOW TIC MARKS AT X=1, X=5, AND X=11 Q :

31 304 334 365 396
424 455 485 516 5u6

ENTER X-AXIS SYMBOLS (IN QUQTES)

OR ENTER QO WITHOQUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHQUT QUOTES FOR NO SYMBOLS

E.G. '1970;1971' OR A VECTOR NANME OR 0 OR 1 Q :

'10803;1172;126431355;2080;2172;2264;2355"

ENTER X-AXIS SYMBOLS LOCATIONS VECTOR

OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO SYMBOLS
E.G. 6 18 OR A VECTOR NAME QOR O

6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18 0 :

80 172 264 355 4u5 536 629 721

ENTER Y-AXIS TIC MARKS LOCATION VECTOR
OR ENTER 0 FOR STANDARD TIC MARKS

gR ENTER 1 FOR NO TIC MARKS

E.G. 0 1 OR A VECTOR NAME OR O OR 1
TIC MARKS AT Y= 1, Y=0, AND Y=1 O

1 0 1 WILL SHOW

0

ENTER Y-AXIS SYMBOLS (IN QUQOTES)

OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS

E.G. '"LO MID HI' OR VECTOR NAME OR 0 OR 1 0 :

0

ENTER Y-AXIS SYMBOLS LOCATIONS VECTOR

or ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS QR NO SYMBQOLS
I.E, 0. 1 OR VECTOR NAME OR O 1 0 1 WILL SHOW LO AT Y=
1, MID AT Y=0, HI AT ¥Y=1 § :

0

THESE AXIS CONTROL ENTRIES WILL NOW BE RUN

DO YOU WANT TO RERUN THE PLOT INPUTS YQU ENTERED
BEFORE RUNNING THIS AXIS CONTROL FUNCTION?
ENTER O FOR NO OR 1 FOR YES QO :

0
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DO YOU WANT TO RERUN THE PLQT INPUTS YQU ENTERED
BEFORE RUNNING THIS AXIS CONTROL FUNCTION?
ENTER 0 FOR NO OR 1 FOR YES 0 :

1

WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED
CONSTRUCTING

ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT
SéggEﬁwEMENT, 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN ON
2NgE ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON

SCREEN
SggngLEMENT, 1(0): AXES, GRIDS, AND GRID LINES ARE (NOT)
E.G. 1 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT AXES AND
GRID LINES § :
0 00

ENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL

1ST ELEMENT, X-AXIS: O = BOTTOM, = TOP, OR 20 = AT Y=0
2ND ELEMENT, Y- AXIS: LE 3 RIGHT, OR 21 = AT X=0
23R3L§gEMENT VERTICAL GRID LTNES 0=NO GRID, 1=DOTTED, OR
uT’H ELEMENT, HORIZON. GRID LINES: 0=NO GRID, 1=DOTTED, OR

2-SOLI
E.G. 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND SOLID
GRID LINES 8 :

e N

20311
PLEASE WAIT RUNNING PAGE

ENTER X-AXIS TIC MARKS LOCATION VECTOR
OR ENTER Q0 FOR STANDARD TIC MARKS
OR ENTER 1 FOR NO TIC MARKS
E.G. 1 5 11 QR A VECTOR NAME OR O OR 1
1 5 11 WILL SHOW TIC MARKS AT X= X=5, AND X=11 0 :

80 170 260 350 u4u0 530 620 710

ENTER X-AXIS SYMBOLS (IN QUOTES)

OR ENTER 0 WITHQUT QUOTES FOR STANDARD SYMBQLS
QR ENTER 1 WITHOUT UOTES FOR NO SYMBOLS

E.G. '1397031971' OR A VECTOR NAME OR 0 OR 1 O :

1

ENTER X-AXIS SYMBOLS LOCATIONS VECTOR

0):4 ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO SYMBOLS
E.C. 18 OR A VECTOR NAME OR

6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18 § :

0
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ENTER Y-AXIS TIC MARKS LOCATION VECTOR

OR ENTER 0 FOR STANDARD TIC MARKS

OR ENTER 1 FOR NQ TIC MARKS -

E.G. 0 1 OR A VECTOR NAME OR O OR 1 1 0 1 WILL SHOW
TIC MARKS AT Y= 1, Y=0, AND Y=1 O

1

ENTER Y-AXIS SYMBOLS (IN QUQTES)

OR ENTER O WITHQUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS

E.G. '"LO MID HI' OR VECTOR NAME OR 0 OR 1 O :

1

ENTER Y-AXIS SYMBOLS LOCATIQONS VECTOR

OR ENTER O FOR SYMBOLS AT DEFAULI. LOCATIONS OR NO SYMBOLS
I.E. 1 OR VECTOR NAME OR O 0 1 WILL SHOW LO AT XY=
1, MID AT Y 0, HI AT Y N

0

THESE AXIS CONTROL ENTRIES WILL NOW BE RUN

DO _YOU WANT TO RERUN THE PLQT INPUTS YQU ENTERED
BEFORE RUNNING THIS AXIS CONTROL FUNCTION?

ENTER 0 FOR NO OR 1 FOR YES N :

0

DO YOU WANT TO DO ANQTHER AXIS CONTROL PAGE?
ENTER O FOR NO OR 1 FOR YES N :

0

DO YOQU WANT TO RESTART THE FUNCTIQN?

IF YOU DO _NOT YOU WILL EXIT THIS FUNCTION

IF YOU EXIT THIS FUNCTION AND WANT TQ RETAIN THIS WORK

USE THE KEEP FUNCTION AND THEN YOU CAN RETURN I0 CMS

BY ENTERING )OFF HOLD

IF YOU WANT TO RETURN TO CMS, SIMPLY ENTER )OFF HOLD AFTER

EXIT
ENTER Q0 FOR EXIT OR 1 FOR RESTART N :

0
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